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Abstract

Skill-based reinforcement learning (SBRL) enables rapid adaptation in environ-
ments with sparse rewards by pretraining a skill-conditioned policy. Effective skill
learning requires jointly maximizing both exploration and skill diversity. However,
existing methods often face challenges in simultaneously optimizing for these two
conflicting objectives. In this work, we propose a new method, Adaptive Multi-
objective Projection for balancing Exploration and skill Diversification (AMPED),
which explicitly addresses both exploration and skill diversification. We begin by
conducting extensive ablation studies to identify and define a set of objectives
that effectively capture the aspects of exploration and skill diversity, respectively.
During the skill pretraining phase, AMPED introduces a gradient surgery technique
to balance the objectives of exploration and skill diversity, mitigating conflicts
and reducing reliance on heuristic tuning. In the subsequent fine-tuning phase,
AMPED incorporates a skill selector module that dynamically selects suitable skills
for downstream tasks, based on task-specific performance signals. Our approach
achieves performance that surpasses SBRL baselines across various benchmarks.
These results highlight the importance of explicitly harmonizing exploration and
diversity and demonstrate the effectiveness of AMPED in enabling robust and
generalizable skill learning. https://geonwoo.me/amped/

1 Introduction

Efficient exploration remains a major challenge in reinforcement learning (RL), particularly in envi-
ronments with sparse or delayed rewards [42, 44, 50, 27]. While biological agents naturally discover
rewarding behaviors, artificial agents often rely on handcrafted reward functions, which demand
extensive domain knowledge and limit scalability [20]. Skill-Based Reinforcement Learning (SBRL)
addresses this by pretraining a skill-conditioned policy through unsupervised skill discovery [15, 47],
enabling efficient adaptation to downstream tasks.

A common approach in SBRL is to use Unsupervised Reinforcement Learning (URL) objectives
during pretraining to discover diverse and useful skills [12, 15]. Two widely used URL methods are:
(1) promoting skill diversity by maximizing mutual information (MI) between skills and their state
trajectories, and (2) encouraging exploration by maximizing state entropy [24, 30]. (see Appendix A
for details.) However, MI-driven objectives often induce premature specialization by curtailing
exploration [10, 19, 48], while entropy-based exploration sacrifices skill distinguishability, limiting
downstream utility. The core problem is how to balance these competing objectives, ensuring skills
remain both distinguishable and broadly exploratory, without resorting to ad-hoc heuristics.

In this work, we bridge two URL paradigms in the theoretical framework of multi-objective reinforce-
ment learning, proposing Adaptive Multi-objective Projection for balancing Exploration and skill
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Figure 1: Graphical scheme explaining our method, AMPED. (a) At initialization, the skills exhibit
small coverage that are close to each other in the task space. (b) During skill pretraining, exploration
and diversity objectives encourage skills to widen and repel each regions. (c) In fine-tuning, the skill
selector identifies the skill best aligned with the target task at each step. (d) The selected skill is
further adapted via extrinsic rewards to maximize performance on the target task.

Diversification (AMPED). Few previous studies, such as CeSD [5] and ComSD [32], have explored
similar integrations but either lack a solid theoretical foundation or exhibit significant limitations
(refer to Appendix B).

Our key insight is that gradient conflicts naturally arise between MI-based diversity objectives and
entropy-based exploration objectives, leading to inefficient updates that hinder learning [55]. To
address this issue, we adopt a gradient surgery method inspired by multi-objective RL, ensuring that
conflicting gradient components are removed before applying updates [55]. For each objective, we
use particle-based entropy and Random Network Distillation (RND) [8] to drive exploration, and
adopt the AnInfoNCE objective for skill diversity. Furthermore, rather than selecting skills uniformly
at random during fine-tuning—as is common in prior SBRL approaches [5, 12, 52]—we introduce
a Soft Actor-Critic (SAC) based skill selector that learns to select the best matching pretrained
skill [17]; and selected skills are also adapted to the task. This adaptive selection manner maximally
leverages the inherent diversity of the skill repertoire. A graphical summary of these contributions is
provided in Figure 1.

We evaluated AMPED across a range of environments, including toy benchmarks and the Unsuper-
vised Reinforcement Learning Benchmark (URLB) [25]. Specifically, in URLB, AMPED improves
the interquartile-mean (IQM) performance over the next-best baselines by: 17.96% relative to the skill-
differentiation method BeCL; 15.02% and 9.73% relative to the entropy-maximization methods CIC
and APT, respectively; 20.91% and 35.01% relative to the hybrid methods CeSD and ComSD. These
results demonstrate that explicitly resolving exploration–diversity gradient conflicts yields substantial
gains in SBRL. Ablation studies further confirm that each component of our framework—entropy
bonuses, RND, Augmented InfoNCE, gradient surgery, and the skill selector—contributes meaning-
fully to overall performance. Ultimately, the gradient surgery used to balance exploration and skill
diversity can be applied to any other objectives or fields with minimal architectural changes.

We provide the full implementation of AMPED to facilitate the reproduction of our main results at
https://github.com/Cho-Geonwoo/amped.

2 Preliminaries

2.1 Markov decision process (MDP) and Conditional MDP (CMDP)

MDP is a tupleM := (S,A,P,R, µ, γ), where S is a state space;A is an action space; P : S ×A →
∆(S) is a transition model where we denote the probability of transitioning from s to s′ with action
a by P (s′|a, s); R : S ×A → R is a reward function; µ ∈ ∆(S) is the initial state distribution;
and γ ∈ R is a discount factor. A trajectory is a sequence of states and actions, for example:
τ = (s1, a1, s2, a2, . . . aH−1, sH). We will only consider finite horizon MDP, i.e. H <∞. A policy
π : S → ∆(A) maps states to action probabilities, denoted as π(a|s).
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Figure 2: Overview of the training process of AMPED. During the skill pretraining phase, the agent
is conditioned on randomly sampled skills and optimized using intrinsic rewards for exploration
and diversity. These gradients not directly used, but are balanced via a gradient surgery mechanism.
In fine-tuning phase, a skill selector adaptively selects skills on each step, based on task-specific
feedback, and the agent is further optimized using extrinsic rewards from the downstream target task.

CMDP extends MDP by introducing a latent variable z ∈ Z , often representing a skill or context.
The policy becomes π(a|s, z), additionally conditioned on z. CMDP is used in skill discovery, where
the goal is to learn diverse, distinct behaviors parameterized by z.

Both MDP and CMDP aim to maximize the expected cumulative discounted reward:
maxπ Eτ∼(π,P )[

∑
t γ(t)rt] where trajectory τ is generated from policy π.

2.2 Entropy and Mutual Information

For random variables X,Y , Shannon entropy and MI are defined as H(X), I(X;Y ), respectively:

H(X) = −E[log p(X)], I(X;Y ) = DKL

(
pX,Y ∥ pX pY

)
(1)

where DKL is a Kullback–Leibler divergence, and pX,Y is a joint distribution. Higher entropy
corresponds to higher unpredictability, the state distribution becomes more uniform in the state
space, thereby facilitating broader exploration. In contrast, higher MI indicates stronger statistical
dependence between two random variables. MI is commonly used between skills and trajectories, so
that each skills reliably produces its characteristic behavior. Moreover, by using contrastive learning
to estimate MI, each skills repel the others, thereby achieving skill diversity.

These information-theoretic terms are widely used as an intrinsic objective in URL. For example,
CIC [24]: I(τ ; z), DIAYN [12]: I(S;Z) + H(A|S) − I(A;Z|S), BeCL [52]: I(S(1);S(2)); see
Appendix C for additional details.

2.3 Gradient Conflict

In multi-objective RL, optimizing multiple objectives simultaneously with the same network can
lead to conflicts between the gradients of each objective. A naive implementation computes the
gradients for each objective independently and performs gradient descent using their sum. However,
this can result in gradient conflict, where the update direction that benefits one task negatively impacts
another [55].

To address this issue, Yu et al. [55] proposed PCGrad, a gradient surgery method designed to mitigate
such conflicts by removing interfering gradient components. Given a set of objectives Lk(θ) for
k = 1, . . . , n, the corresponding gradients are first computed as gk = ∇θLk. The gradients are
then processed sequentially in a random order. For each pair of gradients gi and gk, if a conflict
is detected—i.e., if gi · gk < 0—then the projection of gi onto gk is subtracted from gi. Thus, the
modified gradient is guaranteed not to interfere with the descent directions of other tasks. Moreover,
PCGrad paper showed that under appropriate conditions, a projected gradient step can outperform
standard stochastic gradient descent (SGD). Finally, the adjusted gradients are aggregated and applied
using conventional SGD.
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3 Adaptive Multi-objective Projection for Exploration and Diversification
(AMPED)

Our goal is to maximize both skill diversity and exploration, as supported by prior works [12,
15, 52, 53]. Previous methods in URL, such as CeSD and ComSD [5, 32], have com-
bined these objectives. Following this approach, we optimize the discounted cumulative return
E [

∑
t γ

t(rexploration + rdiversity)], using a DDPG agent [26]. Here, rexploration incorporates entropy and
RND-based objectives [8], while rdiversity includes the AnInfoNCE term [43]. The specific formula-
tions and the rationale for their use are detailed in Section 3.2. We illustrate our overall method in
Figure 2.

Maximizing state entropy is essential because it induces a uniform visitation distribution, minimizing
worst-case regret as shown by Gupta et al. [16]. And this principle has been empirically validated in
prior works [18, 30]. We now briefly motivate the importance of skill diversity for downstream tasks
via the following theoretical analysis.

3.1 Theoretical Analysis of Skill Diversity

Assume a finite state space S with cardinality S, and a finite horizon H . Suppose we are given
skill-conditioned policies π(a | s, z) with a finite number of skills and a downstream task. Let π⋆
be the optimal policy and ρ⋆ ∈ ∆(SH) be a corresponding state distribution. Also set z⋆ as a best
policy in the sense that z⋆ = argminzd(ρ

⋆, ρz). We denoted the total variation of two probability
distributions by d(ρ1, ρ2) = 1

2∥ρ1 − ρ2∥1.

Theorem 1. Define δ = mini ̸=j d
(
ρzi , ρzj

)
, ε = d

(
ρ⋆, ρz⋆

)
. Assume that the skills are sufficiently

diversified, so that ∆ ≡ δ − 2ε > 0.

Draw n i.i.d. roll-outs from optimal policy S(1), . . . , S(n) ∼ ρ⋆ and form the empirical distribution ρ̂.
Consider the greedy skill selector ẑ := argminz d

(
ρ̂, ρz

)
. Then

Pr[ẑ ̸= z⋆] ≤ 2S
H

exp

(
−n∆

2

2

)
(2)

In terms of confidence level η ∈ (0, 1), if

n ≥ 2

∆2
(SH log 2− log η) (3)

we have Pr[ẑ ̸= z⋆] ≤ η.

Thus, higher diversity δ improves the margin ∆ and drives the required sample count down. This
formalizes the intuition that diverse skills make it statistically easier to identify the skill which, when
conditioned upon, yields a policy closest to the downstream optimal policy π⋆. This theorem is proved
in the Appendix D.

3.2 Exploration & Diversity Intrinsic Rewards

Exploration Reward The exploration reward consists of two key components: an entropy-based
term and a RND term [8]. The entropy component, widely used in SBRL [15, 24, 29], enhances
exploration when maximized and is defined as H(Stot), where the discounted total state distribution
is given by Stot(s) = (1 − γ)

∑
t γ

tp(st = s). Since the exact entropy computation is intractable
due to the unknown discounted total state distribution, we approximate it using a particle-based
method from [24]. Each particle is an embedded state pair xi = gψ1

(τi) where τi = (st, st+1) and
gψ1

denotes the embedding function. Then the density is estimated by distances to its kth nearest

neighbor, Ri,k,n. The intrinsic reward is then computed as rentropy(s) = log
(∑k

l=1Ri,l,n

)
, which

captures the entropy contribution of each particle in the state space.

To construct a meaningful latent space, we train an encoder with the contrastive loss:

LCIC(τ) =
gψ1(τi)

⊤gψ2(zi)

∥gψ1
(τi)∥∥gψ2

(zi)∥T
− log

1

N

N∑
j=1

exp

(
gψ1(τj)

⊤gψ2(zi)

∥gψ1
(τj)∥∥gψ2

(zi)∥T

)
, (4)
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(a) CeSD (b) BeCL

Figure 3: Exploration trajectories in the
square maze with six skills. CeSD yields more
contiguous coverage, while BeCL enforces
stronger separation, leaving noticeable gaps.
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Figure 4: Graphical illustration of gradient
surgery. When diversity gradient (red) and
exploration gradient (blue) conflict, one gradi-
ent is randomly projected onto the orthogonal
complement of the other to balance updates.
Added gradient (purple) is used for update of
parameters.

here gψ2 encodes skills, and T > 0 is a temperature hyperparameter, adapted from CIC [24].

Despite its benefits, entropy-based exploration alone is insufficient in high-dimensional spaces due
to its O(n2) complexity, making full-state utilization impractical. Although clipping the particle
number alleviates computational overhead, it correspondingly degrades the fidelity of the entropy
approximation. To address this, we integrate RND, a model-based exploration technique, which is
effective in later training stages when sufficient data is available for model learning. RND trains a
predictor network fθ to approximate the output of a fixed, randomly initialized target network ftarget,
with the intrinsic reward rrnd(s) = ∥fθ(s)− ftarget(s)∥2, where higher prediction error indicates
unfamiliar states, encouraging exploration.

We define the exploration reward as a linear combination of the RND and entropy terms. Specifically,
rexploration(s) = αrentropy(s)+βrrnd(s) where α and β is the positive scaling coefficients that modulate
the relative influence of the entropy-based and RND rewards. Ablation studies in Section 4.3 confirm
that combining entropy and RND significantly improves exploration efficiency in high-dimensional
environments.

Diversity Reward To motivate our diversity reward formulation, we first examine CeSD [5]. CeSD
optimizes H(Stot) + Ldiversity, where Ldiversity ensures non-overlapping skill trajectories. However, if
the supports of different skill coverages become disjoint, the diversity loss Ldiversity no longer enforces
inter-skill distributional separation, which can lead to skill clustering rather than promoting broad
coverage of the state space.

To overcome this limitation, we adopt the MI objective I(S(1), S(2)) from BeCL [52], where S(1) and
S(2) are states sampled from trajectories generated by the same skill. Unlike CeSD’s heuristic penalty,
this formulation actively repels skill distributions, leading to stronger skill separation. Moreover,
they showed that sufficiently maximizing the BeCL objective also increases state entropy, balancing
exploration and diversity. The empirical results of the 2D maze experiment (As shown in Figure 3)
confirm its superiority in differentiating skills compared to CeSD. For an analysis of the effectiveness
of skill diversification under BeCL’s MI objective, refer to Appendix E.

For MI estimation, we use AnInfoNCE [43], an anisotropic variant of InfoNCE [35], designed to
handle asymmetries in latent factors. Empirical studies (Section 4.3) demonstrate its advantage over
standard InfoNCE.

The AnInfoNCE loss is defined as:

LAINCE(f, Λ̂) = −Es,s+,{s−i }

[
ln

e−∥f(s+)−f(s)∥2
Λ̂

e−∥f(s+)−f(s)∥2
Λ̂ +

∑M
i=1 e

−∥f(s−i )−f(s)∥2
Λ̂

]
, (5)

where s, s+ are positive samples (from the same skill), and {s−} are negative samples (from different
skills). The matrix Λ̂ is a learnable diagonal matrix, and the augmented norm is defined as ∥x∥2

Λ̂
=

xT Λ̂x. The state encoder f and Λ̂ are updated via loss minimization. Accordingly, we define
contrastive reward rdiversity as the term inside the bracket.
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3.3 Balancing Exploration and Diversity Objectives

Differentiable skills improve adaptability in dynamic skill selection but often compromise exploration
ability [52], leading to suboptimal performance in environments. By treating MI, entropy, and RND
as distinct objectives, our problem can be framed as a multi-objective RL setting, in which all
three objectives are optimized concurrently. In this perspective, observed gradient interference can
be interpreted as a form of gradient conflict, a well-documented challenge in multi-objective RL.
Empirical evidence of such conflicts in our setting is presented in Table 1.

Table 1: Gradient conflict ratio in skill learning across environments. The ratio is defined as the
fraction of training steps exhibiting gradient conflicts, averaged over 10 random seeds for the Walker,
Quadruped, and Jaco tasks reported as mean ± standard deviation.. One can observe that conflicts
arise with high probability.

Walker Quadruped Jaco

Gradient Conflict Ratio 0.754 ± 0.281 0.907 ± 0.103 0.958 ± 0.056

To mitigate this issue, we integrate a gradient projection method, known as gradient surgery or
projecting conflicting gradients (PCGrad), proposed by Yu et al. [55]. The key idea (Visualized
in Figure 4) is to remove gradient interference by projecting one objective’s gradient onto the
orthogonal complement of the other. Concretely, let gexpl and gdiv denote exploration and diversity
gradient, respectively. At each update, we first randomly choose which gradient to adjust: with
probability p we project gexpl to gdiv, and with probability 1− p vice versa. Then, the final update
gradient gfinal is obtained by summing two gradients, one projected. The procedure is detailed in
Algorithm 1. Although more advanced methods exist (e.g., Liu et al. [28], Navon et al. [33]), we
opted for the original gradient surgery approach due to its simplicity and ease of integration. Despite
its straightforward design, this method proved sufficiently effective in mitigating gradient conflicts
for our application.

3.4 Adaptive Skill Selection

To utilize the diversity of skill set, we adopt a skill selection method during fine-tuning. Specifically,
we train a skill selector p(z|s) concurrently with skill fine-tuning. At every time step, the selector
samples a skill according to p(z|s), while the policy conditioned on that selected skill continues to
adapt under the downstream task reward. We employ an ϵ-greedy strategy with ϵ decaying over the
course of training to balance between exploring new skills and exploiting high-performing ones.

Prior methods often impose constraints to stabilize skill learning. For example, DIAYN [12] freezes
the prior distribution, VIC [15] fixes the skill at initialization, and other approaches rely on labeled
demonstrations. In contrast, our method jointly trains the policy and skill distribution, which turned
out to be stable and effective.

During evaluation, the skill selector becomes deterministic, employing a greedy strategy to maximize
task performance. This hierarchical framework facilitates efficient skill transfer and adaptation while
maintaining decision stability. Detailed descriptions of the implementation of the skill selector are
provided in Appendix F.4.

(a) DIAYN (b) BeCL (c) CIC (d) CeSD (e) ComSD (f) Ours

Figure 5: Agents exploring on Tree Maze after pretrained from different skill discovery objectives.
From (a) to (f) each are trained with 6 skills, and the method used to train is: (a) DIAYN, (b) BeCL,
(c) CIC, (d) CeSD, (e) ComSD, (f) AMPED (Ours). Visually, our approach exhibits the most distinct
skills while ensuring full coverage of the state space.
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Figure 6: Aggregated expert-normalized performance on 12 URLB downstream tasks after 100k
finetuning steps, averaged over 10 random seeds. Four metrics—median, IQM, arithmetic mean,
and optimality gap—are plotted using the evaluation protocol introduced by Agarwal et al. [1]. Our
method (gray) achieves the highest median, IQM, and mean scores and the smallest optimality gap,
outperforming the previous state-of-the-art APT (pink) and other baselines.

4 Experiments

In this section, we provide a comprehensive evaluation of our method’s performance in comparison
with baseline approaches using the URLB. We also illustrate skill visualizations in the Tree Maze,
which reveal how our method explores and separates behaviors. A series of targeted ablations then
isolates the impact of each algorithmic component—RND, AnInfoNCE, gradient surgery, and skill
selector. We conclude by visualizing representative skills learned during URLB pretraining.

4.1 Skill Discovery in Tree Maze

The experiment demonstrating the skill discovery capability is conducted in a Tree Maze envi-
ronment [10]. For details on the environment, implementations, and hyperparameters, refer to the
Appendix F. The Tree Maze serves as a toy environment for preliminary analysis and insight; accord-
ingly, we evaluate a reduced set of baselines, DIAYN, BeCL, CIC, CeSD, and ComSD, compared to
those used in URLB. Refer to the Appendix C for comprehensive details on the baselines.

Figure 5 illustrates the visualization of each baseline’s performance after pretraining with six skills. In
terms of skill distinguishability, our observations indicate that DIAYN, BeCL are capable of learning
distinct skills, enabling clear differentiation among the states covered by each skill. Conversely, the
skills learned by CIC are less distinguishable, likely due to the absence of a skill-differentiating term in
its reward function. Regarding state coverage, CIC, CeSD and ComSD nearly reach the state coverage
limit, whereas DIAYN and BeCL exhibit inferior performance in this regard. Notably, our proposed
method, AMPED, demonstrates superior performance in both maximizing skill discriminability
and state coverage, achieving the state coverage limit while each skill clearly separated. Additional
experiments on the effect of varying the number of skills, results in other maze layout, and the
evolution of skills over training steps are provided in Appendix G.

4.2 Evaluation on URLB

To evaluate the performance of our method on downstream tasks, we utilize 12 tasks from the URLB.
The benchmark comprises three domains: Walker, Quadruped, and Jaco. Detailed descriptions of the
URLB are provided in Appendix F.3. Each method is first pretrained for 200K steps using an intrinsic
reward, followed by fine-tuning for 100K steps on the downstream tasks.

For comparative evaluation, we selected strong baseline methods from the URLB, including DIAYN,
APT, BeCL, CIC, RND, and the recently proposed CeSD and ComSD. Furthermore, methods such
as LSD [36], CSD [37], and Metra [38] were omitted because they do not exhibit performance
improvements on the URLB relative to CeSD [5]. Our implementation adheres to the official URLB
code [23]. Additional information on hyperparameters and network architectures can be found in
Appendix F. For more details on reproducing these baselines, see Appendix F.8.

In order to ensure a fair comparison, we fine-tuned all methods under identical conditions without
using the skill selector. Each method was pretrained with 10 random seeds, resulting in a total of
1080 runs (10 seeds × 9 methods × 12 tasks). The aggregation of statistics was performed using the
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Rliable open-source framework [1]. The expert score, which is used to calculate these metrics, was
derived from an expert DDPG agent, as outlined in [1].

As shown in Figure 6, our method achieves the best results on the URLB. As recommended by
Agarwal et al. [1], we use the IQM as our primary performance measure. In particular, it surpasses the
skill-differentiating methods BeCL by 17.96%, the entropy-maximization method CIC and APT by
15.02%, 9.73%, respectively, as well as the recent diversity–exploration hybrids CeSD and ComSD by
20.91%, 35.01%, respectively. These results suggest that considering both diversity and exploration
is critical for downstream task performance, and more importantly, appropriately balancing these
objectives is essential. All scores of each method at each task is reported at the Appendix H.

Table 2: Episode returns under component ablation (averaged over 10 seeds) across the Walker,
Quadruped, and Jaco benchmarks. Ablating any single component—RND, AnInfoNCE loss, gradient
surgery, or the skill selector—occasionally improves performance on individual tasks, yet yields
degraded overall returns. The best result is shown in bold, and the second-best is underlined.

Domain Task AMPED (Ours) w.o.
RND

w.o.
AnInfoNCE

w.o.
Gradient
Surgery

w.o.
Skill

Selector

Walker

Flip 674 ± 105 487 ± 47 536 ± 75 625 ± 48 686 ± 133
Run 467 ± 103 341 ± 67 440 ± 41 427 ± 57 517 ± 49
Stand 951 ± 38 917 ± 67 950 ± 25 939 ± 26 947 ± 19
Walk 929 ± 19 638 ± 60 923 ± 18 899 ± 45 886 ± 63
Sum 3021 2383 2849 2890 3036

Quadruped

Jump 720 ± 32 597 ± 154 705 ± 22 641 ± 64 699 ± 68
Run 494 ± 53 410 ± 84 496 ± 37 453 ± 13 493 ± 54
Stand 906 ± 67 905 ± 10 867 ± 70 890 ± 34 816 ± 150
Walk 890 ± 59 611 ± 228 870 ± 26 747 ± 114 816 ± 116
Sum 3010 2523 2938 2731 2824

Jaco

Re. bottom left 143 ± 32 147 ± 14 105 ± 33 111 ± 27 139 ± 34
Re. bottom right 144 ± 25 132 ± 40 148 ± 14 114 ± 35 140 ± 21
Re. top left 140 ± 39 163 ± 36 140 ± 23 96 ± 23 130 ± 38
Re. top right 154 ± 46 144 ± 47 92 ± 24 106 ± 49 146 ± 49
Sum 581 586 485 427 555

4.3 Component-Wise Ablation Analysis

Each component’s impact is quantified by individually ablating it within AMPED and reporting the
resulting relative change in total returns (see Table 2). In the Walker domain, removing RND incurs a
21.1% drop; in Quadruped it costs 16.2%; in Jaco, 0.9% increased but it is negligible, confirming
RND’s crucial exploration role. Dropping the AnInfoNCE diversity term reduces Walker by 5.7%,
Quadruped by 2.4%, and Jaco by 16.5%, underscoring the need for skill separation. Disabling gradient
surgery degrades returns by 4.3% (Walker), 9.3% (Quadruped), and 26.5% (Jaco), highlighting the
value of conflict resolution. Finally, omitting the skill selector yields a 0.5% gain in Walker but
decreases Quadruped by 6.2% and Jaco by 4.5%, demonstrating the importance of the skill selector.

Collectively, these ablations confirm that each component-RND, contrastive diversity, gradient surgery,
and skill selection—makes a non-redundant and substantial contribution to the overall efficacy of
AMPED.

4.4 Effect of Projection Ratio on Gradient Conflict Resolution

In Figure 7, we compare three projection strategies: always projecting the exploration gradient onto
the diversity gradient (p = 0.0), always projecting the diversity gradient onto the exploration gradient
(p = 1.0), and our AMPED approach with projection ratio described in Appendix F.5. AMPED
achieves the highest aggregate returns in all three domains; the extreme strategies sometimes excel
on individual tasks but suffer sharp drops elsewhere, lowering overall returns. These results confirm
that a balanced projection ratio effectively mitigates gradient conflicts and consistently improves
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Figure 7: Task-level return comparison under different projection ratios. This figure shows ablation
results across individual tasks in the Walker, Quadruped, and Jaco domains, comparing AMPED with
fixed projection settings (p = 0.0, p = 1.0). Each bar indicates the mean, and error bars represent
the standard deviation. AMPED results are computed over 10 random seeds, while the p = 0.0 and
p = 1.0 variants use 3 seeds each. In the Jaco domain, task labels “Re.bl”, “Re.br”, “Re.tl”, and
“Re.tr” refer to reaching the bottom-left, bottom-right, top-left, and top-right targets, respectively.

skill-learning across diverse environments. Detailed result can be found at Appendix H. For further
ablation on the effects of reward-scaling factors in URLB, refer to Appendix I.

4.5 Visualization of Skills

We visualized the skills learned by our method during the pretraining phase on the URLB. A variety of
meaningful skills—such as getting up from the ground, stepping forward, backward somersault—were
identified. Figure 8 illustrates one of the non-trivial skills; a broader collection of skills is available in
the Appendix L. The ability to acquire diverse skills that are potentially useful for downstream tasks
contributes to the superior performance observed in many downstream tasks, as shown in Figure 6.

Figure 8: Forward somersault behavior acquired during the skill pretraining stage.

5 Conclusion

In this work, we introduce AMPED to address the dual objectives of exploration and skill diver-
sity in SBRL. Our framework unifies entropy-based exploration with contrastive skill separation,
explicitly resolves their gradient conflicts via PCGrad for more stable updates, and employs a skill
selector to adaptively deploy skills during fine-tuning. Empirically, we show that (i) eliminating
exploration–diversity gradient interference is crucial, (ii) combining AnInfoNCE-inspired diversity
losses with RND-driven entropy bonuses yields a robust balance between competing incentives, and
(iii) our skill selector meaningfully boosts downstream performance. Complementing these findings,
we also presented a theoretical analysis highlighting the critical role of skill diversity in optimizing
downstream returns.

While AMPED was developed for skill-based RL, its core insight, treating exploration and diversity
as competing objectives and resolving their gradient conflicts via projection, offers a powerful lens
for any domain confronting multiple learning signals. By demonstrating its efficacy in SBRL, we
hope to inspire broader adoption of gradient-projection methods across machine learning and beyond.

Future research could adopt more advanced conflict-resolution techniques and remove remaining
heuristics, develop more precise estimators for our objectives, or identify alternative objective
functions that better reconcile exploration and diversity. Additionally, investigators might explore
factors beyond exploration and diversity or address the fixed-skill-count limitation of our current
framework. Further details are available in Appendix M. By tackling these challenges, the SBRL
community can progress toward creating richer, more capable agents.
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A Related Works

A.1 Unsupervised Reinforcement Learning

URL aims to train general-purpose policies capable of rapid adaptation to diverse downstream tasks.
This is achieved through the design of intrinsic objectives or rewards that guide exploration without
relying on explicit external feedback. URL typically involves two stages: (1) pretraining, where
agents develop foundational behaviors driven by intrinsic motivation, and (2) fine-tuning, where these
behaviors are adapted to task-specific objectives.

URLB [25] categorizes existing URL algorithms into three primary groups:

1. Data-based approaches encourage agents to explore novel states by maximizing state entropy,
fostering diverse experiences during pretraining. Notable methods include APT [30], which utilizes
particle-based entropy estimators to maximize the distance between k-nearest neighbors (kNN) in
observation embeddings. ProtoRL [54] builds on this idea by incorporating prototypical representation
learning, inspired by SWaV [11], to enhance exploration efficiency. CIC [24] extends ProtoRL by
introducing skills, positioning CIC as both a data-based and competence-based method.

2. Knowledge-based approaches aim to improve an agent’s understanding of environmental dynamics
by maximizing prediction errors, thus incentivizing the exploration of novel or poorly understood
states. The Intrinsic Curiosity Module (ICM) [39] encourages exploration by rewarding agents based
on the error in predicting future state transitions. Reyes et al. [41] extended this idea by incorporating
the prediction of joint observations. On the other hand, disagreement-based methods [40] quantify
uncertainty through an ensemble of predictive models, rewarding states where model predictions
diverge significantly. Random Network Distillation (RND) [8] measures novelty via the prediction
error of a random, fixed target network, where higher errors indicate unfamiliar states. Nikulin et al.
[34] enhanced this idea by applying Feature-wise Linear Modulation.

3. Competence-based approaches, often referred to as unsupervised skill discovery, seek to develop
a diverse repertoire of skills without relying on external rewards. These methods are grounded in
information-theoretic principles, typically maximizing MI between skill embeddings and state, or
trajectories to ensure meaningful and diverse behaviors. For instance, VIC [15] maximizes control-
lability of skills by setting MI between skills and final state, given the initial state as an objective.
DIAYN [12] encourages diversity by maximizing MI between skills and states while ensuring skills
are distinguishable. BeCL [52] leverages contrastive learning to enhance skill discriminability by
maximizing MI between trajectories generated from the same skill; this also has a side effect that
maximizes the entropy in the limiting case.

Our approach synthesizes principles from data-based, knowledge-based, and competence-based
methods, drawing on models such as CIC [24], RND [8], CeSD [5], and BeCL [52]. Specifically, we
address the limitations of these models in balancing exploration and skill diversity by introducing
novel methods for integrating them.

A.2 Unsupervised Skill Discovery

Competence-based approaches, commonly referred to as unsupervised skill discovery, have garnered
significant attention in recent years due to their potential to enable agents to acquire diverse, dis-
criminative behaviors without external supervision. It focuses on enabling agents to learn distinct,
discriminating behaviors without external supervision. Skill diversity has been shown to be critical for
downstream task performance, both empirically and theoretically [12, 24, 53]. This is often achieved
by maximizing the MI between states or trajectories with skills, encouraging agents to develop diverse
and meaningful behaviors. Key contributions in this area include works by [15, 14, 12, 46, 6].

However, these studies [10, 48, 36] have highlighted limitations in traditional MI-based methods,
noting that maximizing MI between states and skills can lead to suboptimal exploration. It is also
theoretically shown that such approach can not construct an optimal policy for some downstream
tasks [13, 53]. There are some methods to address this when the observation space is Cartesian
coordinate space [36, 56]; while effective in specific navigation tasks, these approaches impose strong
assumptions and are less adaptable to general situation. To address these limitations, alternative
approaches introduce auxiliary exploration mechanisms and refined training techniques aimed at
enhancing exploration. While many methods focus on modifying the objective functions—such as
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DIAYN, BeCL, CeSD, ComSD, and CSD—others explore architectural innovations and dynamic
exploration strategies, as seen in DSG [3], EDL [10], and ReST [19]. These techniques aim to
promote diverse exploration without relying solely on objective modifications.

B Difference with Former Studies

Prior to our work, two representative methods for jointly considering exploration and diversity are
CeSD and ComSD. However, our method departs from these approaches in several important ways,
which will be explained in detail. Note that on URLB, our approach achieves 20.91% and 35.01%
higher returns than CeSD and ComSD, respectively.

B.1 Difference with CeSD

Instead of diversifying skills using MI, CeSD maximizes exploration using the entropy, while adding
a regularization term for diversifying skills. This approach mitigates the paucity of exploration
while simultaneously accounting for a diverse array of skills. Unfortunately, the algorithm is time-
consuming because it includes clustering states. The paper avoids this bottleneck by choosing a
subset of states for clustering, which would lead to inaccurate estimation of clustering and, therefore,
instability of training. Also, their regulation on diversity does not work if the state distribution of
different skills does not intersect. Such an effect can be seen in the 2D maze experiment; other methods
like BeCL or DIAYN separate skills effectively, while CeSD does not. This may be advantageous in
low dimension environment like a 2D maze because one can fully cover the whole space. However,
in high-dimensional domains such as URLB, insufficient separation of skills degrades downstream
task performance, as established by our Theorem 1.

B.2 Difference with ComSD

Similar to ComSD, our approach aims to balance the diversity and exploration objectives. ComSD
uses the entropy of trajectory H(τ) as a exploration objective, and negative entropy of trajectory
conditioned to skill −H(τ |z) as a diversity objective. H(τ) is estimated using a particle-based
approach and H(τ |z) is estimated using a variational approach. To balance exploration and diversity,
ComSD employs a specialized weighting mechanism called Skill-based Multi-objective Weighting
(SMW), which assigns different optimization objectives to different skills; some skills emphasizing
diversity while others prioritize exploration. However, this selective assignment does not necessarily
lead to optimal overall performance. ComSD’s method merely differentiates each skill’s repulsiveness
from others, which does not guarantee an ideal trade-off between exploration and diversity. Moreover,
it lacks a solid theoretical foundation to justify the weighting strategy.

In contrast, our method explicitly aims to maximize both exploration and diversity, grounded in the
concept of gradient conflict, which has been extensively studied in prior research [55, 28, 33]. By
directly addressing the conflicts between exploration and diversity gradients, our method achieves a
more stable and theoretically justified optimization process.

C Objectives and Rewards

z denote a skill, ϕ(s) denote a encoded state, and NNk denote a k nearest neighbor.

Neglected the loss for training state encoders.

rpart is a particle-based entropy estimation, and rcontr is a contrastive-based MI estimation; the
specific reward varies slightly depending on the method. The canonical MI objective by InfoNCE is
defined as:

rpart =

n∑
i=1

log ∥zi − NNk(zi)∥, rcontr = E

 exp(f(s
(1)
t ) · f(s(2)t )/κ)∑

sj∈S−1∪{s(2)t } exp(f(s
(1)
t ) · f(sj)/κ)

 (6)
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Table 3: Comparison of Algorithms. Intrinsic Objectives and Rewards of each methods are shown.
Algorithm Intrinsic Objective Intrinsic Reward (rit)

APT H(ϕ(s)) rpart

ICM Eτ [
∑
t γ

trit]
η
2∥ϕ̂(st+1)− ϕ(st+1)∥22

RND Eτ [
∑
t γ

trit] ∥f̂(xt)− f(xt)∥2

CIC H(τ)−H(τ |z) rpart + log q(τ |z)
DIAYN H(z)−H(z|s) +H(a|s, z) log q(z|s)− log p(z)

DADS H(s′|s)−H(s′|s, z) log q(s′|s, z)− log
∑K
i=1 q(s

′|s, zi)
BeCL I(s(1); s(2)) rcontr

CeSD H(s) + α ·
∑
s∈S |dπi(s)− dπ̂i(s)| rpart + α/(|Spei \Sclui |+ λ)

ComSD H(τ)−H(τ |z) rpart + α · rcontr

AMPED (Ours) α ·H(s) + β · LRND + I(s(1); s(2)) α · rpart + β · ∥f̂(xt)− f(xt)∥2 + rAnInfo

D Proof of the theorem

Assume a finite state space S with cardinality S, and a finite horizon H . Suppose we are given
skill-conditioned policies π(a | s, z) with a finite number of skills and a downstream task. Let π⋆
be the optimal policy and ρ⋆ ∈ ∆(SH) be a corresponding state distribution. Also set z⋆ as a best
policy in the sense that z⋆ = argminzd(ρ

⋆, ρz). We denoted the total variation of two probability
distributions by d(ρ1, ρ2) = 1

2∥ρ1 − ρ2∥1.

Theorem 1. Define δ = mini̸=j d
(
ρzi , ρzj

)
, ε = d

(
ρ⋆, ρz⋆

)
. Assume that skills are diversified

enough, so that ∆ ≡ δ − 2ε > 0.

Draw n i.i.d. roll-outs S(1), . . . , S(n) ∼ ρ⋆ and form the empirical distribution ρ̂. Consider the
greedy skill selector ẑ := argminz d

(
ρ̂, ρz

)
. Then

Pr[ẑ ̸= z⋆] ≤ 2S
H

exp

(
−n∆

2

2

)
(7)

In terms of confidence level η ∈ (0, 1), if

n ≥ 2

∆2
(SH log 2− log η) (8)

we have Pr[ẑ ̸= z⋆] ≤ η.

Proof.
Step 1. A sufficient condition for correct selection.
Define d̂ := d

(
ρ̂, ρ⋆

)
. Triangular inequality gives d

(
ρ̂, ρz⋆

)
≤ d

(
ρ⋆, ρz⋆

)
+ d

(
ρ̂, ρ⋆

)
= ε+ d̂. If

d̂ <
∆

2
=
δ

2
− ε, i.e. δ > 2(ε+ d̂),

then ẑ = z⋆ because for every z ̸= z⋆, by triangular inequality,

d
(
ρ̂, ρz

)
≥ d

(
ρz⋆ , ρz

)
− d

(
ρ̂, ρz⋆

)
≥ δ − (ε+ d̂) > ε+ d̂ ≥ d

(
ρ̂, ρz⋆

)
.

Hence
Pr[ẑ ̸= z⋆] ≤ Pr

[
d̂ ≥ ∆

2

]
. (9)

Step 2. Convergence of ρ̂ to ρ⋆.
By Bretagnolle–Huber–Carol (BHC) inequality, for a discrete random variable X =
(X1, X2, . . . , Xk)

Pr
[ k∑
i=1

|Xi − npi| ≥ 2λ
√
n
]
≤ 2k e−2λ2

, X ∼ Mult(n,p).
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Since ρ̂ = 1
n

∑n
i=1 1S(i) , one can consider empirical distribution as X

n with k = SH ; if we let Xi as
a number of occurrence of τi in {S(i)}i≤n, where τi is an ith trajectory in SH = {τ1, τ2, . . . , τSH}.
So

d̂ =
1

2
∥ρ̂− ρ⋆∥1 =

1

2n

∑
τ∈SH

|ρ̂(τ)− ρ⋆(τ)|

Substituting λ = ε
√
n into the BHC inequality gives

Pr
[
d̂ ≥ ε

]
≤ 2k exp

(
−2nε2

)
Now taking ε = ∆

2 and combining with (9) gives

Pr[ẑ ̸= z⋆] ≤ 2S
H

exp

(
−n∆

2

2

)
In terms of confidence level η ∈ (0, 1),

n ≥ 2

∆2
(SH log 2− log η) ⇒ Pr[ẑ ̸= z⋆] ≤ η

E Toy Experiment on AnInfoNCE

Figure 9: Effect of mean vector’s distance on Loss. Toy example showing that the AnInfoNCE
objective has a positive correlation with distance between two distributions. Loss was calculated by
sampling 1000 points from two 5-dimensional Gaussian distributions.

A toy experiment was conducted to evaluate the behavior of the AnInfoNCE objective as a function
of inter-distribution separation. Two mean vectors were first drawn independently from the standard
normal distribution and used to parameterize two Gaussian distributions with identity covariance.
AnInfoNCE was then estimated by Monte Carlo sampling from each distribution. Empirically, we
observe that the AnInfoNCE loss increases monotonically with the Euclidean distance between the
two mean vectors, indicating that larger separations yield higher objective values; see Figure 9. This
monotonic relationship highlights the ability of AnInfoNCE to promote diversity between learned
skill, in contrast to the CeSD objective, which collapses to zero whenever the support sets of the two
distributions do not overlap.

F Implementation Details

F.1 Maze Environments

The maze environments are adapted from the open-source EDL implementation by [9]. In this setup,
the observation is given as S ∈ R2, which represents the current position, while the action is given as
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A ∈ R2, corresponding to the velocity and direction. The agent observes only its current position
and does not have access to the locations of walls, which must be inferred through interaction with
the environment. At the start of each episode, the agent’s initial state is uniformly sampled within a
1× 1 tile. Table 4 summarizes the details and topological characteristics of each maze used in the
experiments.

Table 4: Environment detail of square-maze used for evaluation.

Parameter Value

State space S ∈ R2

Action space A ∈ [−0.95, 0.95]2
Episode length 50

Size: Square maze (Figure 12) 5× 5
Size: Tree maze (Figure 5 and Figure 11) 7× 7

F.2 Network Architectures for Maze Experiments

All code was based on the open-source EDL implementation by [9]. We used PPO [45] as our
on-policy algorithm, with both policy and value functions parameterized by three hidden layers of
size 128 and ReLU activations. The policy network takes the concatenated state and goal vectors,
passes them through three 128-unit MLP layers, then applies a tanh output scaled by the action range.
The critic shares the same three-layer backbone but outputs a single scalar Q-value given (s, a).

For intrinsic rewards, we employed three specialized networks: a CIC encoder comprising a state
network that maps the state vector through two 128-unit hidden layers to an n-dimensional embedding
and a predictor network that takes the concatenated pair of these embeddings (size 2n), processes
it through two 128-unit hidden layers, and outputs an n-dimensional prediction; an RND network
comprising predictor and frozen target MLPs (each with two 128-unit hidden layers) mapping
observations to a n-dimensional feature space, where the mean squared prediction error defines
rrnd; and a BeCL encoder implemented as a three-layer 128-unit MLP that maps observations
to an n-dimensional skill embedding for the AnInfoNCE loss, encouraging non-overlapping skill
distributions.

F.3 URLB Environments

The Walker domain focuses on training a biped constrained to a 2D vertical plane to acquire balancing
and locomotion skills [25]. It includes four downstream tasks: Stand, Walk, Flip, and Run. The
observation space is defined as S ∈ R24, and the action space as A ∈ R6.

The Quadruped domain involves training a four-legged agent for balance and locomotion within a 3D
environment. This domain includes four tasks (Figure 10): Stand, Walk, run, and flip. The observation
space is S ∈ R78, and the action space is A ∈ R16.

The Jaco domain is designed for manipulation tasks using a 6-DoF robotic arm equipped with a
three-finger gripper. It includes four tasks: Reach Top Left, Reach Top Right, Reach Bottom Left, and
Reach Bottom Right. The observation space is S ∈ R55, and the action space is A ∈ R9.

F.4 Network Architectures for URLB Experiments

This section describes the network architecture of our method. At the beginning of each episode, a
skill vector z is sampled, where the default setting uses a one-hot encoding with skill_dim = 16.
This skill vector is concatenated with the processed observation features and used as input to the
policy, value, and intrinsic reward modules.

The raw observation is first processed by a four-layer convolutional encoder, where each layer has 32
channels and uses Rectified Linear Unit (ReLU) activations. The encoder’s output feature map is
then flattened into a latent feature vector of dimensions (repr_dim = 32× 35× 35). The resulting
feature vector is combined with the skill vector before being forwarded to the downstream networks.
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Walker Quadruped Jaco

Stand Walk Stand Walk Reach Bottom Left Reach Bottom Right

Run Flip Run Jump Reach Top Left Reach Top Right

Figure 10: Visualization of the downstream tasks used in the Walker, Quadruped, and Jaco domains.

For decision making, the actor network processes this combined observation and skill vector through
a trunk consisting of a linear layer, layer normalization, and hyperbolic tangent (Tanh) activations.
The resulting feature is passed through two fully connected layers with 1024 hidden dimensions and
ReLU activations, and finally projected to the action space to produce the action distribution. The
critic network applies the same trunk structure to the combined representation. It then concatenates
the resulting features with the action, and processes them through two additional hidden layers with
1024 dimensions each to estimate the Q-values.

The RND module constructs a predictor-target architecture by copying the observation encoder.
Both the predictor and the frozen target network share the same initial encoder and are extended
with a multilayer perceptron (MLP) composed of two hidden layers of 1024 dimensions, producing
representations of dimensions rnd_rep_dim = 1024. The predictor is trained to minimize the mean-
squared error relative to the target’s output.

The CIC module integrates three coordinated components, which consist of a state encoder that
transforms both the current and next observation features into embeddings within the skill space,
a skill projection network that embeds the sampled skill vector, and a predictor network that takes
the concatenated state and next-state embeddings and transforms them into a representation aligned
with the skill embedding. All components use MLP with hidden layers of 1024 dimensions, and the
module is optimized using a contrastive predictive coding (CPC) objective to encourage alignment
between state transitions and the correct skill representation. The state encoder’s outputs are used to
calculate the rentropy, based on kNN distances.

The BeCL module takes observation features (excluding the skill vector) and processes them through
an embedding network with two hidden layers of 1024 dimensions to produce a compact representa-
tion. This representation is then passed through a projection head, which includes another hidden layer
with 1024 dimensions and an output layer, producing outputs that match the skill dimension. This
layered architecture enables the module to generate embeddings that are optimized for contrastive
learning, effectively encouraging skill discrimination in the learned space.

During fine-tuning, we employ a Soft Actor-Critic (SAC)–based skill selector to adaptively choose
a skill vector given the current observation. SAC offers off-policy sample efficiency and entropy-
regularized stability, which help balance exploration and exploitation. The skill selector consists of a
policy network and a value network. The policy network maps observations to a discrete distribution
over skills. It consists of a linear layer follwed by layer normalization and a Tanh activation, then
two fully connected layers with 256 hidden dimensions and ReLU activations, producing logits over
the skill space. A skill is sampled from this distribution using an epsilon-greedy strategy. The critic
network use the same input processing as the policy network. It then maps the resulting feature
through two fully connected layers with 256 hidden dimensions to produce Q-values for each skill.
During training, the critic is updated using temporal difference learning, while the actor is optimized
via entropy-regularized policy gradients [17].

In the ϵ-greedy skill selection strategy, the exploration probability ϵ decays exponentially over
time, starting from ϵ = 1.0 and gradually decreasing to ϵ = 0.01 with an decay factor of 20000
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steps. This encourages early-stage exploration of diverse skills and gradually shifts toward selecting
high-performing skills.

F.5 Hyperparameters

Table 6 and Table 5 contains the hyperparameters we use. Hyperparameter values for the Maze envi-
ronment were adopted directly from the EDL repository [9], while those for the URLB environment
follow the defaults provided by the URLB codebase [23]. We perform hyperparameter tuning in
URLB, focusing on three key components, intrinsic reward weights (α, β), the projection probability
p. We explored values in the ranges α ∈ [10−3, 0.1], β ∈ [10−3, 10], p ∈ [0.5, 1.0].

Table 5: Hyperparameter settings for URLB experiments.
Intrinsic reward hyperparameter Walker Quadruped Jaco
skill dimension 16 16 16
contrastive update rate 3 3 3
temperature 0.5 0.5 0.5
alpha (α) 0.01 0.002 0.03
beta (β) 10 8 0.005
projection probability (p) 0.6 0.65 0.8
Number of nearest neighbors (k) 16 16 16
Skill selector hyperparameter Value
epsilon start 1.0
epsilon end 0.01
epsilon step 20000
learning rate 3× 10−4

DDPG hyperparameter Value

replay buffer capacity 106

warmup frames 4000
n-step returns 3
mini-batch size 1024
discount (γ) 0.99
learning rate 10−4

agent update frequency 2
critic target EMA rate (τQ) 0.01
exploration stddev clip 0.3
exploration stddev value 0.2
number of pre-training frames 2× 106

number of fine-tuning frames 1× 105

Table 6: Hyperparameter settings for Tree Maze experiments.
HyperParameter Value
learning rate (τ ) 3e-4
discount (γ) 0.99
GAE lambda 0.98
entropy lambda 0.025
hidden dim 128
temperature 0.5
alpha (α) 0.01
beta (β) 1e-4
projection probability 0.5
knn k 16
knn clip 5e-4
epoch 50
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F.6 URLB Training Pipeline

Algorithm 1 Gradient Surgery

1: Given: ∇Ldiversity,∇Lexploration, probability p, parameter of critic θcritic, and a learning rate η.
2: if

∑
(∇Ldiversity · ∇Lexploration) < 0 then

3: With probability p:
4: ∇Ldiversity ← Proj∇L⊥

exploration
(∇Ldiversity)

5: Otherwise:
6: ∇Lexploration ← Proj∇L⊥

diversity
(∇Lexploration)

7: end if
8: ∆θcritic = η(∇Ldiversity +∇Lexploration)
9: θcritic ← θcritic −∆θcritic

Algorithm 2 Unsupervised Pretraining with Intrinsic Rewards and Gradient Surgery

1: Given: number of skills n, pretraining frames NPT, seed frames T , batch size N , update interval
Nupdate, policy πθ, critic Qψ

2: Initialize: replay buffer B ← ∅, timestep t← 0
3: while t < NPT do
4: if t mod Nupdate = 0 then
5: Sample skill zt ∼ Uniform[1, n]
6: end if
7: Collect transition (st, at, st+1) ∼ πθ(· | st, zt), p(st+1 | st, at)
8: store (st, at, st+1, zt) in B
9: if t ≥ T then ▷ begin intrinsic-reward pretraining

10: Sample batch {(s, a, s′, z)}Ni=1 ∼ B
11: Update encoders:
12: Minimize contrastive loss (Eq. 4), RND prediction loss, and AnInfoNCE loss (Eq. 5)
13: Compute intrinsic rewards:
14: Calculate rexploration, rdiversity as defined in Sec. 3
15: Update critic & actor:
16: Compute gradients for diversity and exploration losses
17: Apply Gradient Surgery (Alg. 1)
18: Update policy πθ and critic Qψ
19: end if
20: t← t+ 1
21: end while

Algorithm 3 Fine-Tuning with Extrinsic Rewards and Joint Skill Selector Training

1: Given: number of finetuning frames NFT, batch size N , update interval U , critic Qψ , pretrained
policy πθ, skill selector pϕ(z | s)

2: Initialize: replay buffer D←∅, timestep t←0
3: while t < NFT do
4: Observe state st
5: Select skill zt ∼ pϕ(z | st)
6: Select action at ∼ πθ(a | st, zt)
7: Execute at to obtain (st+1, rt)
8: Store (st, at, rt, st+1, zt) in D
9: if t mod U = 0 then ▷ Update both selector and agent

10: Sample batch {(s, a, r, s′, z)}Ni=1 ∼ D
11: Update θ, ψ using extrinsic reward r
12: end if
13: t← t+ 1
14: end while
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F.7 Training Time Comparison

Table 7 compares the wall-clock training time of AMPED against a range of baselines on the Walker,
Quadruped, and Jaco domains. Notably, AMPED incurs only a modest increase in runtime relative to
competitive methods like CeSD and BeCL despite exceeding their downstream performance (see
Figure 6). Although AMPED requires more computation than CIC (an overhead of 3–6 hours), this
extra cost yields substantial performance gains over CIC’s purely entropy-based exploration. Overall,
these findings demonstrate that AMPED strikes a favorable balance between computational cost and
empirical performance.

Table 8 reports fine-tuning times. Because AMPED (Ours) includes the SAC-based skill selector, its
fine-tuning incurs a modest overhead of approximately 0.06–0.11 h (4–7 min) compared to baselines
such as CIC and BeCL. In future work, we aim to further optimize runtime efficiency—perhaps via
more streamlined encoder updates or low-precision training—while preserving the joint handling of
exploration and diversity.

Table 7: Pretraining time (hours with decimal minutes) comparison across different algorithms on
Walker, Quadruped, and Jaco domains. Results are computed over 10 random seeds and reported as
mean ± standard deviation.

Domain AMPED (Ours) CeSD CIC BeCL APT RND DIAYN DDPG ComSD

Walker 13.47 ± 0.06 22.28 ± 0.08 7.34 ± 0.18 18.13 ± 4.65 11.02 ± 0 5.19 ± 0.14 7.34 ± 0.14 4.34 ± 0.03 7.5 ± 0.03

Quadruped 13.62 ± 0.1 23.01 ± 0.0 7.6 ± 0.21 13.42 ± 2.72 11.18 ± 0.01 5.45 ± 0.02 6.96 ± 1.37 4.49 ± 0.05 7.74 ± 0.03

Jaco 13.72 ± 0.03 22.76 ± 0.07 7.61 ± 0.03 14.88 ± 3.11 11.39 ± 0.03 6.4 ± 1.09 8.11 ± 0.02 4.78 ± 0.1 7.91 ± 0.02

Table 8: Fine-tuning time (hours with decimal minutes) comparison across different algorithms on
Walker, Quadruped, and Jaco domains. Results are computed over 10 random seeds and reported as
mean ± standard deviation.

Domain AMPED (Ours) CeSD CIC BeCL APT RND DIAYN ComSD

Walker 0.35 ± 0 0.7 ± 0 0.26 ± 0 0.24 ± 0 0.23 ± 0 0.36 ± 0 0.37 ± 0.01 0.25 ± 0

Quadruped 0.35 ± 0.01 0.73 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.26 ± 0.01 0.44 ± 0.01 0.4 ± 0.01 0.28 ± 0.01

Jaco 0.32 ± 0.03 0.72 ± 0.02 0.27 ± 0.01 0.29 ± 0 0.26 ± 0.02 0.28 ± 0.06 0.38 ± 0 0.26 ± 0

F.8 Reproducing Baselines

All baseline methods were integrated from their respective open-source implementations and evaluated
under our unified settings. In the Maze environment, DIAYN, CIC, and BeCL were reproduced using
the EDL repository [9], and ComSD was imported from its official codebase [31]). Since no public
implementation of CeSD exists for the Maze tasks, we followed the visualizations described in the
original CeSD paper.

For the URLB, we leveraged the official URLB code [23] to reproduce DIAYN, RND, and APT. CIC,
BeCL, and CeSD were run using their respective public implementations [22, 51, 4]. As ComSD
lacks an official URLB release, we reimplemented it from its 2D-Maze variant, strictly adhering
to the hyperparameters reported in its original publication. Although we employed the unmodified
CeSD hyperparameter settings from its codebase and paper, our empirical performance fell short of
the authors’ published results.

F.9 Experimental Setup and Reproducibility

All experiments were conducted on a Windows 11 workstation equipped with an AMD Ryzen 7 7700
8-core processor (3.80 GHz), 64GB DDR5 RAM, and an NVIDIA RTX 3060 GPU (12GB GDDR6).
Each experiment was run on a single GPU. The detailed wall-clock time for training and fine-tuning
are summarized in Table 7 and Table 8.
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We implemented all experiments in Python 3.8.10, using PyTorch (v1.9.0+cu111) as the primary deep
learning framework. The DeepMind Control suite [49] (dm-control v1.0.8) was used for environment
simulation, and agent-environment communication was handled through the dm_env interface (v1.6).

G Additional Experiments in Maze

G.1 Effect of the Number of Skills

Figure 11 illustrates how different methods partition the Tree Maze as the number of skills increases
from 5 to 25. Unlike DIAYN and BeCL, which tend to leave large regions unexplored or produce
overlapping trajectories, our method fills the entire maze while maintaining clear separation between
skills. When using 10 or 15 skills, both CIC and ComSD exhibit substantial mixing between skill
regions, whereas AMPED preserves distinct, non-overlapping coverage for each skill. At higher skill
counts (20 and 25), all methods begin to overlap simply due to capacity limits, making AMPED’s
advantage over ComSD less visually pronounced; nonetheless, it still outperforms CIC in maintaining
cleaner skill boundaries. These results confirm that AMPED effectively balances exploration and
diversity even as the dimensionality of the skill space grows.

DIAYN

BeCL

CIC

ComSD

AMPED
(Ours)

5 skills 10 skills 15 skills 20 skills 25 skills
Figure 11: Skill region partitioning in the Tree Maze. This visualization shows the skill allocations
of each method as the number of skills increases from 5 to 25. AMPED consistently fills the maze
with well-separated regions, whereas DIAYN and BeCL leave gaps, and CIC and ComSD exhibit
increasing overlap as the skill count grows.

G.2 Result in Square Maze

In the Square Maze (As shown in Figure 12), AMPED again achieves full coverage and largely
distinct skill regions, with only minor overlaps. By contrast, DIAYN and BeCL leave large areas
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under-explored or learn only a few broad behaviors, sacrificing either coverage or separation. CIC
covers most of the state-space but generates highly entangled trajectories, indicating poor skill
disentanglement. ComSD attains coverage similar to AMPED but exhibits more pronounced region
mixing. Overall, these results confirm that AMPED not only generalize beyond the Tree Maze but
both maximizes exploration and enforces strong skill diversity in the Square Maze as well.

DIAYN BeCL CIC ComSD AMPED
Figure 12: Skill-trajectory coverage in the Square Maze with 15 skills. Each method’s trajectories are
shown: AMPED explores every corridor with separated regions, whereas DIAYN and BeCL leave
gaps and CIC and ComSD exhibit overlapping trajectories.

G.3 MI and Entropy Estimation

In multi-objective settings, optimizing several objectives can degrade performance on each compared
to single-objective training. To evaluate this, we compared the entropy and MI losses against their
respective mono-objective baselines, using particle-based entropy estimation and MINE-based MI
estimation as in BeCL [7]. Figure 13 confirms that neither objective suffers a significant loss.

(a) Entropy Estimation (b) MI Estimation

Figure 13: Entropy and MI estimates after pretraining with 10 skills in the Square Maze. (a)
Particle-based entropy estimates [30] show that AMPED achieves significantly higher state entropy
(exploration) than diversity-focused methods (BeCL, DIAYN), while matching CIC and ComSD.
(b) MI estimated via MINE [7] indicates that AMPED attains diversity comparable to BeCL and
DIAYN and substantially exceeds CIC and ComSD. Together, these results demonstrate that AMPED
simultaneously maximizes exploration and diversity better than existing baselines.

G.4 Evolution of Skills Across Time Steps

As illustrated in Figure 14, early in training (epoch 1), the policy aggressively explores new branches,
rapidly expanding its state coverage. By epoch 3 and 5, the trajectory has spanned nearly the entire
maze, maximizing exploration. In later stages (epoch 7 and 9), the skill’s path is refined: it begins
to adjust which corridors it traverses to carve out distinct regions and increase diversity. Although
such clear visualizations are not possible in high-dimensional spaces, this simple sequence provides
intuition for how our method first drives broad exploration and then sculpts well-separated skill
behaviors.
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(a) Epoch 1 (b) Epoch 3 (c) Epoch 5 (d) Epoch 7 (e) Epoch 9

Figure 14: Skill trajectory evolution in the Tree Maze over training epochs. A representative skill’s
path is shown at 2-epoch intervals (epochs 1, 3, 5, 7, and 9), illustrating initial rapid expansion of
coverage followed by progressive refinement into distinct, well-separated skill regions.

H Numerical Results

H.1 Per-Task Episode Returns on URLB Domains

We report per-task episode returns (mean ± standard devition over 10 seeds) following the evaluation
protocol of Agarwal et al. [1]. All methods are pretrained for 2M steps with only intrinsic rewards,
then finetuned for 100k steps on each downstream task by adding the extrinsic reward. Table 9
presents results on the Walker, Quadruped, and Jaco domains.

AMPED achieves at least second best performance in almost every discipline, and has the highest total
sum, which confirms that our method consistently perfoms well on different tasks. More concretely,
AMPED achieves a cumulative total sum of 6415, which is the highest among all methods. The next
best is APT with 6362, trailing AMPED by 53 points, and CIC comes third at 5822, well behind by
593 points. These per-task breakdowns confirm that AMPED’s joint handling of entropy, RND, and
diversity objectives delivers consistently strong performance across a diverse set of URLB challenges.
Although CeSD and ComSD also aim to balance diversity and exploration, AMPED outperforms
both on all but one task (Re., top left), demonstrating that our unified objective formulation is more
effective.

Table 9: Performance comparison across different algorithms on various tasks. AMPED (ours)
is compared with eight baselines across tasks in Walker, Quadruped, Jaco domains. Results are
computed over 10 random seeds and reported as mean ± standard deviation. AMPED is trained
without a skill selector for fair comparison.

Domain Task AMPED (Ours) CeSD CIC BeCL APT RND DIAYN DDPG ComSD

Walker

Flip 686 ± 133 623 ± 90 637 ± 108 625 ± 66 729 ± 129 483 ± 71 329 ± 39 531 ± 46 488 ± 57
Run 517 ± 49 377 ± 89 454 ± 82 435 ± 73 542 ± 73 371 ± 86 183 ± 35 327 ± 115 341 ± 100
Stand 947 ± 19 915 ± 68 939 ± 33 953 ± 11 949 ± 20 892 ± 47 716 ± 127 905 ± 56 937 ± 17
Walk 886 ± 63 805 ± 133 874 ± 67 818 ± 189 892 ± 62 792 ± 139 434 ± 94 736 ± 149 826 ± 111
sum 3036 2720 2904 2831 3112 2538 1662 2499 2592

Quadruped

Jump 699 ± 68 529 ± 160 580 ± 120 668 ± 44 720 ± 32 643 ± 50 555 ± 159 337 ± 129 607 ± 101
Run 493 ± 54 390 ± 212 442 ± 72 394 ± 98 468 ± 97 435 ± 34 398 ± 88 251 ± 112 336 ± 91
Stand 816 ± 150 853 ± 40 693 ± 193 640 ± 215 821 ± 192 839 ± 45 644 ± 179 511 ± 253 684 ± 201
Walk 816 ± 116 562 ± 322 630 ± 183 635 ± 205 758 ± 192 571 ± 90 404 ± 200 209 ± 60 396 ± 182
sum 2824 2334 2345 2337 2767 2488 2001 1308 2023

Jaco

Re. bottom left 139 ± 34 136 ± 25 135 ± 19 148 ± 26 120 ± 24 101 ± 24 20 ± 21 133 ± 57 126 ± 24
Re. bottom right 140 ± 21 134 ± 7 152 ± 23 140 ± 22 126 ± 25 115 ± 24 22 ± 20 115 ± 62 111 ± 41
Re. top left 130 ± 38 175 ± 8 137 ± 21 123 ± 35 124 ± 22 97 ± 30 22 ± 22 101 ± 60 126 ± 25
Re. top right 146 ± 49 97 ± 29 149 ± 19 116 ± 31 113 ± 25 122 ± 30 12 ± 12 87 ± 53 121 ± 15
sum 555 542 573 527 483 435 76 436 484

Total sum 6415 5596 5822 5705 6362 5461 3747 4243 5099
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H.2 Ablation Study on Projection Ratio p

As detailed in Section 4.4, AMPED’s balanced projection ratio mitigates gradient conflicts and
enhances skill learning across diverse environments; numerical results are presented in Table 10.

Table 10: Performance comparison under different projection ratio p settings. AMPED (ours) result
are computed as return (mean ± standard deviation) over 10 random seeds, while fixed projection
baselines (p = 0.0, p = 1.0) use 3 seeds each. Our adaptive projection strategy yields the highest
return for nearly every tested environment, compared to fixed projection target.

Domain Task AMPED (Ours) p = 0.0 p = 1.0

Walker

Flip 674 ± 105 628 ± 55 606 ± 37
Run 467 ± 103 427 ± 44 533 ± 71
Stand 951 ± 38 949 ± 3 931 ± 12
Walk 929 ± 19 939 ± 13 828 ± 73
Sum 3021 2943 2898

Quadruped

Jump 720 ± 34 706 ± 19 661 ± 34
Run 494 ± 56 483 ± 6 501 ± 29
Stand 906 ± 71 859 ± 109 905 ± 4
Walk 890 ± 62 613 ± 183 626 ± 129
Sum 3010 2661 2693

Jaco

Re. bottom left 143 ± 34 133 ± 44 126 ± 10
Re. bottom right 144 ± 27 108 ± 53 140 ± 17
Re. top left 140 ± 41 84 ± 37 126 ± 29
Re. top right 154 ± 49 103 ± 32 139 ± 34
Sum 581 428 531

I Ablation Study on Reward Scaling Factor

Table 11: Performance comparison under different α and β settings, where α and β control the
relative weight of entropy-based and RND rewards. AMPED (Ours) result are computed as return
(mean ± standard deviation) over 10 random seeds, while each α or β configuration is evaluated
using 3 random seeds. Only the denoted hyperparameter is changed and others remain the same as in
Appendix F.5.

Domain Task AMPED (Ours) α = 0 α = 100 β = 0 β = 1000

Walker

Flip 674 ± 105 609 ± 44 587 ± 74 524 ± 38 586 ± 88
Run 467 ± 103 505 ± 10 420 ± 99 382 ± 29 505 ± 39
Stand 951 ± 38 942 ± 26 956 ± 6 948 ± 9 923 ± 30
Walk 929 ± 19 913 ± 43 908 ± 21 863 ± 59 878 ± 94
Sum 3021 2969 2871 2717 2892

Quadruped

Jump 720 ± 34 677 ± 50 710 ± 59 623 ± 100 648 ± 61
Run 494 ± 56 493 ± 23 459 ± 122 371 ± 127 613 ± 92
Stand 906 ± 71 865 ± 55 837 ± 117 904 ± 27 875 ± 23
Walk 890 ± 62 844 ± 58 805 ± 73 720 ± 118 852 ± 53
Sum 3010 2879 2811 2618 2998

Jaco

Re. bottom left 143 ± 34 94 ± 31 123 ± 22 133 ± 35 134 ± 16
Re. bottom right 144 ± 27 111 ± 15 96 ± 15 114 ± 35 118 ± 37
Re. top left 140 ± 41 115 ± 18 159 ± 24 145 ± 63 121 ± 3
Re. top right 154 ± 49 112 ± 22 143 ± 18 112 ± 16 106 ± 11
Sum 581 432 521 504 479
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In this ablation, we keep every setting in Appendix F.5 fixed except for one of the reward-scaling
factors. As shown in Table 11, deviating from the defaults on either α or β degrades the sum of
episode returns in most domains. Setting α = 0 (no entropy reward) or β = 0 (no RND reward)
leads to substantial drops, while excessively large values (α = 100 or β = 1000) improve some
individual tasks but hurt overall performance. The default AMPED weights achieve the best aggregate
performance, underscoring the need for balanced scaling between exploration and novelty signals.

J Additional Experiments on Reward Scaling Factor

In Table 12, we present additional ablation results for the entropy reward weight α and the RND
reward weight β. In the Walker domain, the average sum return across five (α, β) configurations
is 2989.4, which still ranks second among the baselines in Table 9. Notably, the (0.01, 8) setting
achieves a sum return of 3323, outperforming all baselines. Similarly, in the Quadruped domain, the
average across the five configurations is 2908.2, exceeding the best baseline performance. Moreover,
the (0.002, 10) configuration yields even better performance than our default hyperparameter choice.
These results suggest that careful tuning of α and β can yield further improvements for AMPED.

Table 12: Ablation study results under various (α, β) settings. The leftmost column (AMPED) reports
the mean ± std over 10 random seeds; all other columns show single-run returns for each modified
hyperparameter configuration.

Domain Task AMPED (0.01, 10) (0.02, 10) (0.005, 10) (0.01, 12) (0.01, 8)

Walker

Flip 674 ± 105 667 535 599 886
Run 467 ± 103 451 354 550 565
Stand 951 ± 38 960 942 964 949
Walk 929 ± 19 893 891 797 923
Sum 3021 2971 2722 2910 3323

Task AMPED (0.002, 8) (0.004, 8) (0.001, 8) (0.002, 10) (0.002, 6)

Quadruped

Jump 720 ± 34 597 702 710 717
Run 494 ± 56 499 276 512 488
Stand 906 ± 71 956 792 918 918
Walk 890 ± 62 833 853 891 869
Sum 3010 2885 2623 3031 2992

K Additional Experiments on Skill Selection

One of the central motivations for our approach is that the skill selector, responsible for choosing
among a diverse, pretrained set of skills, should substantially enhance overall performance. However,
an ablation in the Walker domain (3021 with the selector vs. 3036 without it) revealed that adopting
the skill selector does not lead to consistent improvements; in fact, performance even degrades in the
Walker domain.

To investigate this discrepancy, we designed a complementary experiment isolating each pretrained
skill: for each task, we fix a single skill and condition the policy exclusively on that skill during
fine-tuning, both for training and evaluation. Specifically, we ran the experiments on the flip and run
tasks in the Walker benchmark, where the selector previously degraded performance, and the stand
and walk tasks in the Quadruped benchmark—where the selector had been beneficial (3010 with the
selector vs. 2824 without it).

The fixed-skill results in Table 13 show that the skill selector underperforms single-skill fine-tuning
across three tasks. Crucially, this deficit persists whether the selector had previously appeared
beneficial (as in the Quadruped environments) or not (as in Walker), indicating that the selector itself,
rather than domain-specific factors, is the primary bottleneck. Although dedicated fine-tuning benefits
from sustained gradient updates targeted at a single skill, the observed performance gap suggests
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Table 13: Fine-tuning returns (mean ± std) over 3 seeds on Walker (flip / run) and Quadruped
(stand/walk) tasks under different skill-selection regimes. “Single-Skill” reports the average return
across fine-tuning each pretrained skill individually; “Oracle Best Skill” denotes the highest return
achieved by the single best skill.

Domain Task Skill Selector Random Skill Single-Skill Oracle Best Skill

Walker
Flip 674± 105 686± 133 719± 121 913± 3
Run 467± 103 517± 49 503± 74 603± 19

Quadruped
Stand 906± 71 816± 150 911± 43 959± 5
Walk 890± 62 816± 116 837± 62 912± 17

that the selector’s learning is hampered, likely by sparse rewards. Consequently, its value estimates
remain unstable, leading to suboptimal choices. These findings underscore the need for more robust
training strategies for the skill selector.

L Visualization of Skills

Figure 15 illustrates the skills acquired during the pretraining stage for each environment.

M Limitations

As with any research, our approach presents several limitations that highlight opportunities for future
investigation:

• Better gradient conflict resolver: Although PCGrad is easy to implement and powerful,
it has few limitations. First, Liu et al. [28] demonstrate that PCGrad does not preserve
the original objectives; instead, it merely guarantees convergence to the Pareto set. More
advanced gradient conflict-resolution techniques have since been developed; future work
can select the method best suited for SBRL.

• Removing heuristics: Although we have introduced theory-based gradient surgery to
balance exploration and diversity of skills, we still use the rule of thumb such as positive
hyperparameters α, β for rtotal = rdiversity + αrentropy + βrrnd. Future work should eliminate
such empirical rule of thumb.

• Inaccuracy and inefficiency of Estimators: AnInfoNCE lacks precision, so future research
should consider approaches that tightens the MI bound. And for entropy which has a high
computational overhead, one should explore methods that are computationally efficient and
capable of functioning effectively in high-dimensional state spaces. Model-based approaches,
such as those using normalized flows [2], could be potential solutions.

• Better objectives: The diversity term adopted from the BeCL paper influences entropy,
leading to gradient conflicts. Future research could focus on developing better objectives
that maintain diversity without compromising entropy. In addition to entropy and RND
based exploration, there has been a lot of research going on [21]. One may find a better way
to explore more efficiently and effectively.

• Balancing Other Factors Beyond Diversity and Exploration: While our work primarily
focuses on diversity and exploration, other aspects are also being actively studied to improve
performance. Exploring how to harmonize our method with these additional aspects could
be a valuable direction for future research. For instance, recent studies, such as [37], rewards
states that are difficult to reach.

• Fixed Number of Skills: The current model treats the number of skills as a fixed hyperpa-
rameters, which is of course not ideal across different environments; see Figure G. While
too few skills limit overall state coverage, once exploration saturates, adding more skills
offers no further benefit. Developing mechanisms to dynamically adjust the number of skills
according to the environment’s requirements could enhance flexibility and performance.
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Walker: Getting up from the ground

Walker: Stepping forward

Walker: Backward somersault

Quadruped: Recovers from an upside-down position to stand upright

Quadruped: Backward somersault

Quadruped: Clockwise rotational movement

Jaco: Reaches left to grasp the target

Jaco: Reaches toward the right area and grasps the object

Jaco: Upward lifting motion while attempting to grasp the target

Figure 15: Representative skills learned by our method. Walker skills include rising from a supine
position, stepping forward, and performing a backward somersault. Quadruped skills demonstrate
self-righting, acrobatic flips, and rotational maneuvers. Jaco skills capture precise arm motions such
as leftward reaching, rightward grasping, and upward lifting toward a target.
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