
ANNEALING BRIDGES OFFLINE AND ONLINE RL

Geonwoo Cho1 Jaegyun Im1 Doyoon Kim1 Lexin Li2
1Gwangju Institute of Science and Technology 2University of California, Berkeley
gwcho.public@gmail.com

ABSTRACT

Adopting the pretrain-finetune paradigm, offline-to-online reinforcement learn-
ing (RL) first pretrains an agent on historical offline data and then finetunes it
through online interactions, aiming to leverage prior knowledge while adapting
efficiently and safely to the new environment. A central challenge, however, is the
tradeoff between catastrophic failure, i.e., a sharp early collapse in performance
when the agent first transitions from offline to online, and the asymptotic success
rate, i.e., the long-term performance the agent ultimately achieves after sufficient
training. In this article, we first conduct a systematic study using various control
benchmarks and find that existing offline and offline-to-online RL methods fail to
simultaneously prevent catastrophic failure and achieve high asymptotic success
rates. Next, we examine how offline data and conservative regularization influ-
ence this tradeoff. Then, we identify spurious Q-optimism as the key driver of
collapse, i.e., early in fine-tuning, the learned value function can mistakenly rank
inferior actions above those from offline training, steering the policy toward fail-
ure. Finally, we introduce Smooth Offline-to-Online Annealing for RL (SOAR), a
simple but effective dual annealing scheme that gradually reduces reliance on of-
fline data and conservative penalties, thereby mitigating catastrophic failure while
improving long-term performance. We carry out extensive numerical experiments
to confirm the efficacy and robustness of SOAR across diverse RL tasks.

1 INTRODUCTION

The pretrain-finetune paradigm has driven much of the recent success in modern machine learning
across diverse domains such as natural language processing and computer vision (Min et al., 2023;
Khan et al., 2024). Inspired by these advances, reinforcement learning (RL) has adopted a similar
paradigm: an agent is first pretrained offline using historical static data, is then subsequently fine-
tuned via online interactions with the target environment (Agarwal et al., 2022; Luo et al., 2024).
This setting, known as offline-to-online RL, allows the agent to leverage effectively the prior knowl-
edge, while adapting efficiently and safely to the new environment, reducing the reliance on costly
and risky online interactions.

Previous studies along this direction have shown that modifying the training objective or algorithmic
structure during the online phase leads to a better long-term performance than naively deploying
offline RL algorithms without modification (Nakamoto et al., 2023; Zhou et al., 2025; Xiao et al.,
2025). However, catastrophic failure often occurs, i.e., there is a sharp early collapse in performance
when the agent first transitions from offline to online. This raises a challenging and open question:
how can we achieve both high asymptotic success rates and reduced catastrophic failure during the
transition to the online phase?

This question is particularly critical in safety-sensitive applications such as healthcare and robotics
(Singh et al., 2022; Liu et al., 2020). For instance, in the medical domain, offline datasets may
capture prior treatment information, while online fine-tuning involves real-time patient interactions.
Catastrophic failure in this scenario could result in harmful interventions. Ideally, the agent should
remain aligned with the optimal actions learned from the offline data, while using online explorations
to uncover additional optimal actions not represented in the offline data.

To address this question, we first conduct a systematic study on complex and realistic robot control
environments from D4RL (Fu et al., 2020), Adroit, FrankaKitchen, and AntMaze. We evaluate two

1

representative offline RL algorithms, IQL (Kostrikov et al., 2022) and CQL (Kumar et al., 2020), as
well as three offline-to-online RL algorithms, Cal-QL (Nakamoto et al., 2023), PORL (Xiao et al.,
2025), and recent state-of-the-art WSRL (Zhou et al., 2025). We analyze their catastrophic failure
modes and success rates during online fine-tuning. On AntMaze, we further extend our study to the
challenging ultra-diverse variant, where none of the baseline methods achieves a perfect success rate,
thereby stress-testing the algorithms in the most difficult settings. We have found that the existing
methods cannot simultaneously prevent catastrophic failure and achieve high long-term success rate.

Next, to better understand the drivers of collapse and the ingredients for high asymptotic perfor-
mance, we perform a controlled study with CQL. We have found that, eliminating the conservative
regularizer improves the asymptotic performance, whereas phasing out the offline data yields faster
convergence. Nevertheless, removing either the conservative regularizer, which serve as inductive
biases tailored to offline training, or the offline data, substantially increases the incidence of catas-
trophic failure. Nevertheless, removing either the conservative regularizer, an inductive bias tailored
to offline training, or the offline data substantially increases the incidence of catastrophic failure.

We further hypothesize that a main driving factor for catastrophic failure is Spurious Q-Optimism.
That is, early in online fine-tuning, the agent incorrectly reverses the relative value ordering between
the actions from offline pre-training and those proposed by the current policy for the same state,
causing the agent to favor the actions that later prove inferior under convergence. We quantify this
effect via a new metric called Spurious Q-Optimism Ratio (SQOR), which is defined as the fraction
of states whose current versus final value ordering disagrees, and show that SQOR closely tracks
the incidence of collapses across tasks and settings. Furthermore, we show that alternative strategies
proposed in prior works (Fujimoto & Gu, 2021; Zhou et al., 2025; Xiao et al., 2025), including regu-
larizing critic KL divergence, adjusting update-to-data (UTD) ratios, modifying warmup lengths, or
tuning hyperparameters such as batch size, network dimensions and learning rates, are insufficient
to effectively mitigate catastrophic failure.

Finally, motivated by these insights, we propose Smooth Offline-to-Online Annealing for RL
(SOAR), a simple yet effective method that gradually decreases both the offline data ratio and the
conservative regularizer weight α via annealing during online fine-tuning. Empirical results show
that this dual annealing strategy lowers the incidence of catastrophic failure compared with exist-
ing baselines, while achieving superior long-term performance. We also conduct extensive ablation
studies on SOAR’s hyperparameters and on the contribution of each annealing component. These
studies offer an actionable guidance: to prioritize stability and suppress early catastrophic failures,
one may apply a single-component annealing in a task-dependent manner. We also outline concrete
design choices and practical heuristics for hyperparameter selection.

Our contributions are four-fold. First, we provide a systematic study demonstrating that prevail-
ing offline and offline-to-online methods fail to balance catastrophic failure suppression with high
asymptotic success. Second, we show how offline data and conservative regularization shape this
trade-off, which points to a pathway toward achieving both goals simultaneously. Third, we identify
the key driving factor behind catastrophic failure and derive a metric to quantify it. Finally, we in-
troduce SOAR, a simple yet effective dual annealing scheme that consistently reduces catastrophic
failure and improves long-term performance.

2 RELATED WORKS

Offline-to-Online RL. While offline RL methods such as CQL (Kumar et al., 2020), IQL (Kostrikov
et al., 2022), and others (Kostrikov et al., 2021; Tarasov et al., 2023) can be deployed online, strong
online performance typically requires additional fine-tuning. Simply fine-tuning the offline objective
without modification often limits gains (Nakamoto et al., 2023), motivating methods that explicitly
leverage online interaction. Proposed approaches include relaxing excessive conservatism in value
estimates (Nakamoto et al., 2023; Luo et al., 2024; Hu et al., 2024), inserting an adaptation phase
between offline pre-training and online fine-tuning (Zhou et al., 2025; Shin et al., 2025; Xiao et al.,
2025), using multiple Q-functions (Lee et al., 2022; Zhao et al., 2023), tuning the UTD ratio (Feng
et al., 2024; Xiao et al., 2025), and incorporating uncertainty (Guo et al., 2023; Wen et al., 2024b). In
contrast to methods that update both value functions and policies (including ours), some approaches
rely exclusively on pretrained policies (Uchendu et al., 2023; Xiao et al., 2025; Hu et al., 2023).

2

Several works observe catastrophic failure during the transition from offline pre-training to on-
line fine-tuning, attributing it to distributional shift and unstable Q-learning (Wen et al., 2024a;
Nakamoto et al., 2023). Many proposed remedies introduce additional computation, e.g., uncertainty
estimation (Wen et al., 2024a), calibration penalties (Nakamoto et al., 2023), or actor-critic align-
ment (Yu & Zhang, 2023). In contrast, our method employs a minimal design based on annealing,
which adds essentially no computational overhead while also improving asymptotic performance.

3 EXPERIMENTAL SETUP

Environments and Datasets. Following the evaluation protocol of WSRL (Zhou et al., 2025), we
assess our method on three challenging, realistic environments: FrankaKitchen and AntMaze from
D4RL (Fu et al., 2020), and the dexterous manipulation environment Adroit from AWAC (Nair
et al., 2020). Within these environments, we evaluate the following tasks: for Adroit, pen-binary
and door-binary; for FrankaKitchen, kitchen-mixed and kitchen-partial; and for AntMaze, antmaze-
large-diverse and antmaze-large-play. All offline pre-training datasets match those used in WSRL.
Further details on the tasks and datasets are provided in Appendix G.

Figure 1: Evaluated Environments.
Illustration of the environments used in
our experiments: AntMaze, FrankaK-
itchen, and Adroit.

Training Procedure. For training, we pretrain for 1M
steps in AntMaze, 250K steps in FrankaKitchen, and 40K
steps in Adroit, followed by 400K online fine-tuning steps
for all tasks. Compared to WSRL (Zhou et al., 2025),
which used only 300K fine-tuning steps, we extend fine-
tuning steps to 400K steps to better observe asymptotic
performance trends. On Adroit, we found that increas-
ing pen-binary pre-training from 20K (used in WSRL) to
40K yields more consistent gains; for door-binary, offline
pre-training variance is higher and the difference between
20K and 40K is less pronounced, but we adopt 40K to sta-
bilize trends.

Baseline Methods. We include WSRL (Zhou et al., 2025) and PORL (Xiao et al., 2025) as recent
offline-to-online methods, Cal-QL (Nakamoto et al., 2023) due to its explicit treatment of catas-
trophic failure, and CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), and SAC (Haarnoja
et al., 2018) to align with prior evaluations in WSRL and ensure comprehensive comparisons. Fur-
ther details on all baselines are provided in Appendix F.

We largely follow the experimental setup of WSRL (Zhou et al., 2025). Modifications on the exper-
imental setup to stabilize training are detailed in Appendix G.3. Due to computational constraints,
we use five random seeds in all experiments (unless otherwise noted) and report 95% confidence in-
tervals with shaded regions in the plots. Across all experimental results, Step 0 marks the beginning
of the online fine-tuning phase.

CQL. We adopt CQL as the backbone of our method, following WSRL and Cal-QL. In offline
RL, the agent is trained using a fixed dataset D = {(si, ai, ri, s′i)}Ni=1 collected by some behav-
ior policy, without interacting with the environment. A key challenge is that standard Q-learning
objectives can assign erroneously high values to actions not present in the dataset, leading to poor
policy performance when deployed online. CQL (Kumar et al., 2020) addresses this by adding a
regularization term to the standard Bellman error that penalizes Q-values of actions sampled from
the policy relative to those from the dataset:

LCQL = LTD + α
(
Es∼D,a∼π[Qθ(s, a)]− Es,a∼D[Qθ(s, a)]

)
, (1)

where α > 0 controls penalty strength. This discourages high Q-values for OOD actions.

Metrics. We define catastrophic failure as the drop between the success rate at the start of fine-
tuning and the minimum success rate observed within the first 100K steps, isolating the effect of
the offline-to-online transition from training stochasticity. As reported in Appendix K, extending
the window to the full 400K steps yields no statistically significant change in the measured failure
magnitude, which justifies our choice of a 100K step window.

We define the asymptotic success rate as the mean success rate over 350K-400K steps. As evident in
Figure 2, all baselines have converged by 350K, and Appendix K confirms no statistically significant

3

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
door-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
Aggregated Over All Envs

SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

Figure 2: Annealing Bridges Offline and Online RL. Existing offline and offline-to-online meth-
ods fail to simultaneously mitigate catastrophic failure and attain high asymptotic success. In con-
trast, our method (SOAR) reduces early performance collapse and achieves superior final perfor-
mance across tasks. Step 0 marks the start of online fine-tuning.

difference between performance at 350K and 400K. Hence, performance in this interval is a valid
proxy for asymptotic behavior.

4 CHALLENGES IN BRIDGING OFFLINE AND ONLINE RL: PERFORMANCE
VS. STABILITY

We first show that existing offline RL algorithms and offline-to-online approaches are unable to
simultaneously prevent catastrophic failure during online fine-tuning and attain high asymptotic
success rates. As illustrated in Figure 2, when baselines are finetuned without retaining offline data,
none of the methods meet both objectives. Notably, the only objective-level difference between the
offline algorithm CQL and the online algorithm SAC is CQL’s conservative regularizer (Equation 1).
Among offline-to-online methods, WSRL and PORL set CQL’s conservative weight α to zero during
fine-tuning, whereas CQL and Cal-QL keep α equal to its offline pre-training value. Empirically,
WSRL and PORL achieve higher asymptotic performance than CQL and Cal-QL, but suffer larger
catastrophic failures. This motivates a controlled analysis of how removing the conservative regu-
larizer affects both outcomes. In addition, because the availability of offline data is a key distinction
between the offline and online phases, we also study how retaining versus discarding offline data
influences performance and stability.

5 ROLE OF OFFLINE DATA AND CONSERVATIVE REGULARIZATION IN
ONLINE FINE-TUNING

To disentangle the effects of offline data and conservative regularization, we conduct controlled
studies with CQL during online fine-tuning. As shown later, removing either α or offline data
increases the incidence of catastrophic failure. Accordingly, when analyzing catastrophic failure,
we vary one factor while holding the other fixed: we keep α at its offline-pre-training value when
assessing the effect of offline data, and we fix the offline replay mixture at 25% per update when
assessing the effect of α. Conversely, when analyzing asymptotic performance, we ablate one factor
by removing it entirely while varying the other, so as to evaluate the agent’s ability to discover
optimal actions absent from the offline prior. The 25% offline data ratio is held constant across all
tasks and seeds for these experiments.

We observe on kitchen-partial, kitchen-mixed, and pen-binary that retaining offline data and main-
taining the conservative regularizer α both mitigate catastrophic failure, whereas keeping α sup-
presses asymptotic performance (Figure 3). When offline data is fully removed, final returns are
typically lower than when using a fixed mini-batch composition of 25% offline samples at every
update. In contrast, annealing the offline fraction to zero, as in our method (Section 7.1), yields
faster convergence and final performance comparable to retaining offline data. As highlighted by

4

(a)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
door-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

(b)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

(c)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

(d)
0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

offline data O offline data X offline data annealing O X

Figure 3: Controlled analysis of offline data and conservative regularization. Success rates of
CQL during online fine-tuning across four tasks (kitchen-partial, kitchen-mixed, door-binary, pen-
binary). (a) Keeping the conservative regularizer (α) reduces early collapses. (b) Keeping α lowers
asymptotic performance. (c) Dropping offline data induces severe early drops. (d) Annealing offline
data speeds convergence; with a suitable schedule, performance can match retaining offline data.

WSRL (Zhou et al., 2025), persisting offline data during online fine-tuning can depress asymptotic
performance, especially when the online and offline distributions are mismatched or the offline data
are of lower quality, and also incurs storage/throughput overhead. Hence, if one can avoid using
offline data online without sacrificing performance, avoiding offline data online is preferable.

In the door-binary, the low initial success rate makes it difficult to meaningfully compare the effect
of each factor on catastrophic failure. However, the conclusion regarding success rates remains con-
sistent with the other tasks. These findings suggest that the inductive bias inherited from offline RL,
as well as the continued reliance on offline data during online training, hinder effective exploration
of the optimal policy. Thus, while mechanisms to mitigate catastrophic failure remain necessary,
removing these constraints is essential for achieving higher asymptotic performance.

6 SPURIOUS Q-OPTIMISM AS A DRIVER OF CATASTROPHIC FAILURE

Why does removing the conservative regularizer and offline data in CQL trigger catastrophic failure
during online fine-tuning? We posit a single overarching mechanism: Spurious Q-Optimism. Early
in fine-tuning, the critic can erroneously reverse the relative value ordering between the offline-
pretrained policy’s action and the action proposed by the current policy for the same state, which
steers learning toward actions that later prove inferior under the converged critic. In this section, we
(i) formalize this phenomenon, (ii) show that its incidence tracks catastrophic failure across tasks,
and (iii) demonstrate that neither tuning hyperparameter in baselines nor slowing the critic’s drift
from its offline initialization reliably prevents collapse.

6.1 QUANTIFYING SPURIOUS Q-OPTIMISM

To test this mechanism, we quantify spurious Q-optimism at each online step via a preference sign
mismatch between the current and converged critics. For a minibatch of states s, define ∆t(s) =
Qt

(
s, acurr

)
− Qt

(
s, aoff

)
, ∆final(s) = Qfinal

(
s, acurr

)
− Qfinal

(
s, aoff

)
, where acurr is sampled

5

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k
Steps

0.2

0.4

0.6

SQ
OR

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.2

0.4

0.6

SQ
OR

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

0 10k 20k 30k
Steps

0.2

0.4

0.6

offline data O offline data X O X

Figure 4: SQOR tracks catastrophic failure across tasks. Lower Spurious Q-Optimism Ratio
(SQOR) consistently aligns with fewer and milder collapses across all four tasks. Vertical lines
mark the onset of catastrophic failure for each method.

from the policy at step t and aoff from the offline-pretrained policy on the same states. A state is
flagged as optimistic if the signs disagree, equivalently, when ∆t(s)∆final(s) < 0. The Spurious
Q-Optimism Ratio (SQOR) is the fraction of batch states satisfying this sign mismatch at step t.

To analyze the association between SQOR and catastrophic failure, we consider the two stress set-
tings that induce failures in Figure 3: (i) removing offline data during fine-tuning and (ii) removing
the conservative regularizer α. Because door-binary exhibits a very low initial success rate and does
not manifest a meaningful failure drop (Figure 3), we report results on four tasks, antmaze-large-
diverse, kitchen-partial, kitchen-mixed, and pen-binary.

To obtain Qfinal, we use the checkpoint after 400K online steps for the same random seed, since
success rates are stable by that point (Figure 3). Because catastrophic failure emerges within <
30K steps (Figure 3), we report SQOR over the first 30K steps to capture onset dynamics while
keeping computation tractable. Due to computational constraints, all experiments analyzing SQOR
are conducted with three random seeds.

Empirically, SQOR exhibits a strong correlation with catastrophic failure. As shown in Figure 4,
across four tasks and both stress settings, lower SQOR coincides with fewer and milder collapses.
In Appendix A, we further examine related diagnostics, the Spurious Q-Optimism Gap (SQOG)
(aggregate magnitude of preference mismatch), Online-only SQOR (O-SQOR) (counts only cases
with ∆t(s) > 0 and ∆final(s) < 0), and volatility (step-to-step Q-value fluctuations). None of these
alternatives consistently explain failures across all tasks.

This pattern suggests that the count of misordered state-action comparisons (SQOR) is the primary
predictor of collapse. SQOR captures (i) direct errors, where the current policy is pulled toward ac-
tions that ultimately underperform the offline-pretrained actions (the immediate trigger of collapse),
and (ii) an indirect effect, where unusually high values assigned to offline-pretrained actions reveal
critic instability, although not a direct cause when those actions are selected, such instability can
precipitate future direct errors. The fact that O-SQOR (which removes the indirect component) fails
to account for failures while SQOR does indicates that this indirect effect materially contributes to
catastrophic failure. Formal definitions and full correlation analyses are provided in Appendix A.

6

UTD
1
4
16

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

Warmup
5k
10k
20k

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
Su

cc
es

s R
at

e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Cal QL

5
10
15 0 100k 200k 300k 400k

Steps
0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 5: Hyperparameter tuning does not prevent catastrophic failure. Effects of varying
hyperparameters on online fine-tuning across antmaze-large-diverse, antmaze-large-play, kitchen-
mixed, and pen-binary. Top: UTD ratio; Middle: warmup length; Bottom: Cal-QL’s conservative-
regularizer weight (αCal-QL). Increasing UTD, extending warmup, or tuning αCal-QL fails to avert
early performance collapse.

0 100k 200k 300k 400k
Steps

0
50

100
150

D
KL

antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0
50

100
150 antmaze-large-play-v2

0 100k 200k 300k 400k
Steps

0.0

2.5

5.0 kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0

100

200 pen-binary-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

KL 0.1 0.5 2.0

Figure 6: Regularizing the critic’s shift does not prevent collapse. Top: Critic distribution shift
during online fine-tuning, measured as DKL

(
softmax(Qoffline)|softmax(Qonline)

)
under varying

KL-penalty strengths αKL (larger αKL slows the shift). Bottom: Corresponding success rates.
Across four tasks (antmaze-large-diverse, antmaze-large-play, kitchen-mixed, pen-binary), even
when the shift is substantially reduced, early-stage catastrophic failure persists.

6.2 CAN CATASTROPHIC FAILURE BE MITIGATED BY HYPERPARAMETER TUNING?

We next investigate whether catastrophic failure can be mitigated solely through tuning hyperpa-
rameters in baselines when both α and offline data are removed during online fine-tuning with CQL.
One candidate is the UTD ratio, which increases the frequency of critic updates per online interac-
tion and was suggested by Xiao et al. (2025) as a means to alleviate catastrophic failure. However,
as shown in Figure 5, simply increasing the UTD ratio does not effectively reduce catastrophic fail-
ure across tasks. We also evaluated the use of a warmup phase, where the agent does not update
its parameters but collects trajectories via online interaction using the offline-pretrained policy, as
proposed in Zhou et al. (2025). Increasing the warmup length likewise fails to reduce catastrophic
failure across tasks.

In addition, Cal-QL proposed modifying the conservative regularizer in CQL as a potential rem-
edy (Nakamoto et al., 2023). We experimented with retaining the regularizer while varying its
weight (αCal-QL). However, increasing the weight did not produce meaningful reductions in catas-
trophic failure across tasks. This indicates that even the modified conservative regularizer in Cal-QL
does not provide a significant mitigation effect.

7

Beyond hyperparameter tuning, we also examine whether moderating the critic’s distributional shift
away from the offline-pretrained critic can alleviate catastrophic failure. To control the shift speed,
we augment the TD loss with a KL penalty between the action distributions induced by the offline
and online critics, optimizing

min
θ
LTD(θ) + αKL Es,a∼B

[
DKL

(
softmax

(
Qoffline

θ (s, ·)
)
|softmax

(
Qonline

θ (s, ·)
))]

,

where B denotes the replay buffer and αKL > 0 controls the strength of the KL penalty, with larger
values more strongly suppressing the distributional shift, as empirically illustrated in Figure 6. This
objective is motivated by the hypothesis of Zhou et al. (2025) that slowing the critic’s distributional
shift may reduce catastrophic failure. However, Figure 6 shows that in practice, more aggressive
regularization of the critic’s shift does not reduce catastrophic failure.

Further analyses of hyperparameter adjustments, including batch size, network dimensions, and
learning rates, are presented in Appendix C. None of these adjustments produced substantial im-
provements across tasks, reinforcing our claim that Spurious Q-Optimism is the fundamental driver
of catastrophic failure.

7 ANNEALING BRIDGES OFFLINE AND ONLINE RL

Building on the analyses in Sections 5 and 6, we propose SOAR (Smooth Offline-to-Online Anneal-
ing for RL), a simple yet effective method that mitigates catastrophic failure while attaining superior
asymptotic performance. The core idea is to gradually remove conservative regularizer and offline
data that stabilize early fine-tuning but hinder long-term performance. In addition, through extensive
ablations, we disentangle the respective roles of offline data and α annealing, and show how practi-
tioners can tailor SOAR’s components as practical design choices depending on whether robustness
or final performance is prioritized.

7.1 SOAR (SMOOTH OFFLINE-TO-ONLINE ANNEALING FOR RL)

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

SQ
OR

antmaze-large-diverse-v2

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

kitchen-partial-v0

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

kitchen-mixed-v0

5k 10k 15k 20k 25k 30k
Steps

0.3
0.4
0.5
0.6
0.7

pen-binary-v0

SOAR WSRL

Figure 7: WSRL vs. SOAR on SQOR. Spurious Q-Optimism Ratio (SQOR) over the early online
phase across four tasks. SQOR trajectories for WSRL and SOAR are statistically indistinguish-
able on antmaze-large-diverse, kitchen-partial, and kitchen-mixed, whereas WSRL exhibits higher
SQOR on pen-binary, aligning with its larger catastrophic failure in Figure 2.

SOAR uses standard CQL for offline pre-training on Doff and modifies only the online fine-tuning
phase. The key idea is to gradually remove (i) the offline data used in replay and (ii) the conservative
regularizer, to stabilize at the beginning of fine-tuning while enabling unconstrained exploration
later. Concretely, at online step t we form a minibatch Bt by mixing samples from the offline and
online buffers, Bt ∼ λtDoff + (1 − λt)Don, where λt ∈ [0, 1] is a replay composition schedule
that monotonically decreases to 0. The critic is updated with the usual CQL objective, but with a
time-varying conservative weight αt:

LSOAR
t (θ) = LTD(θ;Bt) + αt

(
Es∼Bt, a∼πθ(·|s)[Qθ(s, a)]− E(s,a)∼Bt

[Qθ(s, a)]
)
, (2)

and the actor is optimized as in CQL with no architectural changes. Thus, SOAR is algorithmically
minimal: it introduces no new losses beyond CQL, only two annealing schedules.

We employ a linear schedule for the offline data-ratio, λt = max{0, λ0(1 − t/Tλ)}, so that the
fraction of offline samples decays monotonically to zero, and an exponential schedule for the conser-
vative weight with separate controls for decay rate and annealing interval: αt = max{0, α0 exp

(
−

8

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

SOAR annealing only offline data annealing only

Figure 8: Single-component annealing ablations. Comparison of (i) conservative-weight (α) an-
nealing only and (ii) offline data-ratio annealing. Offline data-ratio annealing reduces early perfor-
mance collapse but can limit final success rate, while combining both (SOAR) achieves the best
overall performance across all four tasks.

r · (t/Tα)
)
}. Here, λ0 denotes the initial offline data fraction, Tλ the annealing horizon for replay

composition, α0 the conservative weight used during offline pre-training, r > 0 the decay rate, and
Tα > 0 the annealing interval. Task-specific settings for (λ0, Tλ, α0, r, Tα) are provided in Ap-
pendix G. Early in fine-tuning, larger λt and αt damp catastrophic failure by anchoring to offline
support and pessimism; as t increases, both terms vanish, allowing the agent to fully exploit online
interaction. We provide the pseudocode for SOAR in Algorithms 1.

Despite its simplicity, SOAR consistently reduces catastrophic failure and improves asymptotic per-
formance across tasks (Figure 2). Examining the diagnostics, SQOR levels for SOAR and WSRL
are statistically indistinguishable on antmaze-large-diverse, kitchen-partial, and kitchen-mixed (Fig-
ure 7). However, on pen-binary, WSRL exhibits a significantly higher SQOR than SOAR, mirroring
the relative magnitude of catastrophic failure observed in Figure 2.

Crucially, the dual annealing schedules enable a complete phase-out of both the offline replay (data
ratio λt → 0) and the conservative penalty (weight αt → 0) during fine-tuning, yielding a smooth
transition to fully online, non-conservative training without the large performance collapses ob-
served in prior methods. For complete numerical results across all tasks, see Appendix K.

7.2 ABLATION: WHAT DOES EACH ANNEALING COMPONENT CONTRIBUTE?

To quantify the contribution of each component in SOAR, we ablate the dual annealing design into
two single-component variants and compare them against the full method. (i) Offline data-ratio
annealing only: λt decays linearly to 0 while the conservative penalty is disabled throughout online
fine-tuning (αt = 0). (ii) Conservative-weight (α) annealing only: αt decays exponentially to 0
while no offline data are mixed into replay (λt = 0). For the scheduling in each variant, we use the
same hyperparameters as in SOAR. We also report ablation on the antmaze-ultra-diverse task which
is a harder version of antmaze-large-diverse, in Appendix D.

Results in Figures 8 and 13 indicate a task-dependent trade-off. The preferred annealing depends on
the severity of exploration-induced collapse and on whether risk mitigation or asymptotic return is
prioritized. When exploration risk is severe, retaining conservatism while annealing only the data
ratio tends to yield the most stable learning. Otherwise, as a robust default across tasks, using both
annealings (SOAR) provides the most reliable risk-return balance.

8 CONCLUSION

We introduced SOAR, a simple offline-to-online fine-tuning procedure that jointly anneals the of-
fline replay ratio and the conservative regularizer. This dual schedule balances two competing objec-
tives, reducing early catastrophic failure and achieving strong asymptotic performance, by retaining
offline data and pessimism at the start of fine-tuning and then smoothly phasing both out to enable
unconstrained online improvement.

Our analysis identifies spurious Q-optimism as a primary driver of collapse: early critics can mis-
order the current-policy and offline-pretrained actions for the same state, and the resulting Spurious
Q-Optimism Ratio (SQOR) closely tracks catastrophic failures across tasks. In contrast, a range of
alternatives, including hyperparameter variations, warmup, higher UTD ratios, and explicit penalties

9

that slow the critic’s drift from its offline initialization, do not reliably prevent collapse. Ablations
further show that while single-component schedules (only data-ratio or only conservative-weight
annealing) offer useful knobs for safety or speed, their combination (SOAR) delivers the most fa-
vorable stability-performance trade-off overall.

Beyond a practical recipe, SOAR offers a lens on offline-to-online RL: the transition is best viewed
as balancing stability against exploration. This suggests several directions for future work, includ-
ing adaptive or performance-aware scheduling, tighter theory linking spurious Q-Optimism to fail-
ure probabilities, and extensions to vision-based and real-robot settings. We hope these findings
encourage more principled designs for bridging offline pre-training and online improvement.

10

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in Neural Information Processing Systems, 35:28955–28971, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in Neural Information Processing
Systems, 34:7436–7447, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement
learning with offline data. In Proceedings of the International Conference on Machine Learn-
ing (ICML), pp. 1577–1594. PMLR, 2023.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao. On the opportunities
and challenges of offline reinforcement learning for recommender systems. ACM Transactions
on Information Systems, 42(6):1–26, 2024.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021. arXiv preprint arXiv:2101.05982.

Rohan Chitnis, Yingchen Xu, Bobak Hashemi, Lucas Lehnert, Urun Dogan, Zheqing Zhu, and
Olivier Delalleau. Iql-td-mpc: Implicit q-learning for hierarchical model predictive control. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 9154–9160. IEEE,
2024.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. Advances in Neural Information Processing Sys-
tems, 35:35603–35620, 2022.

Jiaheng Feng, Mingxiao Feng, Haolin Song, Wengang Zhou, and Houqiang Li. Suf: Stabilized
unconstrained fine-tuning for offline-to-online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11961–11969, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132–20145, 2021.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Siyuan Guo, Yanchao Sun, Jifeng Hu, Sili Huang, Hechang Chen, Haiyin Piao, Lichao Sun, and
Yi Chang. A simple unified uncertainty-guided framework for offline-to-online reinforcement
learning. arXiv preprint arXiv:2306.07541, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018.

Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie Lv, Changjie Fan,
Qianchuan Zhao, and Chongjie Zhang. Bayesian design principles for offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2405.20984, 2024.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing. arXiv preprint arXiv:2311.02198, 2023.

11

Asifullah Khan, Anabia Sohail, Mustansar Fiaz, Mehdi Hassan, Tariq Habib Afridi, Sibghat Ul-
lah Marwat, Farzeen Munir, Safdar Ali, Hannan Naseem, Muhammad Zaigham Zaheer, et al.
A survey of the self supervised learning mechanisms for vision transformers. arXiv preprint
arXiv:2408.17059, 2024.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
21810–21823, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 5774–5783. PMLR, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xudong Sun, and Mengling Feng.
Reinforcement learning for clinical decision support in critical care: Comprehensive review. Jour-
nal of Medical Internet Research, 22(7):e18477, 2020. doi: 10.2196/18477.

Qin-Wen Luo, Ming-Kun Xie, Yewen Wang, and Sheng-Jun Huang. Optimistic critic reconstruc-
tion and constrained fine-tuning for general offline-to-online rl. Advances in Neural Information
Processing Systems, 37:108167–108207, 2024.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. In Advances in Neural Information Processing Systems, volume 36, pp. 62244–62269,
2023.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration
by random network distillation. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 26228–26244. PMLR, 2023.

Kwanyoung Park and Youngwoon Lee. Model-based offline reinforcement learning with lower
expectile q-learning. arXiv preprint arXiv:2407.00699, 2024.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

12

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237–10257, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Yongjae Shin, Jeonghye Kim, Whiyoung Jung, Sunghoon Hong, Deunsol Yoon, Youngsoo Jang,
Geonhyeong Kim, Jongseong Chae, Youngchul Sung, Kanghoon Lee, et al. Online pre-training
for offline-to-online reinforcement learning. arXiv preprint arXiv:2507.08387, 2025.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic appli-
cations: A comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022. doi:
10.1007/s10462-021-10067-x.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592–11620, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In
Proceedings of the International Conference on Machine Learning (ICML), pp. 34556–34583.
PMLR, 2023.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Xiaoyu Wen, Xudong Yu, Rui Yang, Haoyuan Chen, Chenjia Bai, and Zhen Wang. Towards Robust
Offline-to-Online Reinforcement Learning via Uncertainty and Smoothness. Journal of Artificial
Intelligence Research, 81:481–509, 2024a. doi: 10.1613/jair.1.16457. URL https://jair.
org/index.php/jair/article/view/16457.

Xiaoyu Wen, Xudong Yu, Rui Yang, Haoyuan Chen, Chenjia Bai, and Zhen Wang. Towards robust
offline-to-online reinforcement learning via uncertainty and smoothness. Journal of Artificial
Intelligence Research, 81:481–509, 2024b.

Wei Xiao, Jiacheng Liu, Zifeng Zhuang, Runze Suo, Shangke Lyu, and Donglin Wang. Efficient
online rl fine tuning with offline pre-trained policy only. arXiv preprint arXiv:2505.16856, 2025.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34:28954–28967, 2021.

Zishun Yu and Xinhua Zhang. Actor-Critic Alignment for Offline-to-Online Reinforcement Learn-
ing. In ICML, pp. 40452–40474, 2023.

Kai Zhao, Jianye Hao, Yi Ma, Jinyi Liu, Yan Zheng, and Zhaopeng Meng. Enoto: Improving offline-
to-online reinforcement learning with q-ensembles. arXiv preprint arXiv:2306.06871, 2023.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online rein-
forcement learning fine-tuning need not retain offline data. In Proceedings of the International
Conference on Learning Representations (ICLR), 2025.

13

https://jair.org/index.php/jair/article/view/16457
https://jair.org/index.php/jair/article/view/16457

A ADDITIONAL ANALYSIS ON CATASTROPHIC FAILURE

0 10k 20k 30k
Steps

0.0

0.5

1.0
Su

cc
es

s R
at

e antmaze-large-diverse-v2

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

O-
SQ

OR

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0

2

4

6

SQ
OG

0 10k 20k 30k
Steps

0

2

4

6

0 10k 20k 30k
Steps

0

2

4

6

0 10k 20k 30k
Steps

2
4
6
8

10

0 10k 20k 30k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.0

0.5

1.0

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

O-
SQ

OR

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0.1
0.2
0.3
0.4

0 10k 20k 30k
Steps

0

2

4

6

SQ
OG

0 10k 20k 30k
Steps

2

4

6

8

0 10k 20k 30k
Steps

2

4

6

8

0 10k 20k 30k
Steps

4
6
8

10
12

offline data O offline data X O X

Figure 9: SQOG and O-SQOR do not predict collapse. Across four tasks and two stress settings,
SQOG (magnitude of mismatch) and O-SQOR (one-sided optimism) show inconsistent alignment
with catastrophic failures.

In Section 6, we showed that the Spurious Q-Optimism Ratio (SQOR) exhibits a strong correlation
with catastrophic failure. Could other factors be responsible? In this section, we systematically
investigate alternative explanations and find none that consistently account for the observed failures.
Mirroring the SQOR analysis, we examine correlations between catastrophic failure and candidate
metrics under two stress settings, removing offline data and removing the conservative regularizer
α, across four tasks, antmaze-ultra-diverse, kitchen-partial, kitchen-mixed, and pen-binary.

Spurious Q-Optimism Gap (SQOG). Let ∆t(s) = Qt(s, acurr) − Qt(s, aoff) and ∆final(s) =
Qfinal(s, acurr)−Qfinal(s, aoff). WithMt = { s : sgn(∆t(s)) ̸= sgn(∆final(s)) }, we define

SQOG(t) =
1

|Mt|
∑

s∈Mt

∣∣∆t(s)−∆final(s)
∣∣.

SQOG measures the magnitude of preference mismatch on misordered states. As shown in Figure 9,
SQOG does not exhibit a consistent trend with catastrophic failure across tasks, suggesting that the
number of misordered states (captured by SQOR) is more predictive of collapse than the size of a
few large errors.

14

Online Spurious Q-Optimism Ratio (O-SQOR). Focusing on the one-sided, harmful optimism
cases, we define

O-SQOR(t) =
1

|Bt|
∑
s∈Bt

1
[
∆t(s) > 0 ∧ ∆final(s) < 0

]
,

i.e., the current critic prefers the current-policy action, while the converged critic prefers the of-
fline action. O-SQOR does not consistently align with catastrophic failure across tasks than SQOR
(Figure 9), indicating that both mismatch directions contribute to overall collapse risk.

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0
pen-binary-v0

0 10k 20k 30k 40k 50k
Steps

-1

0

1

lo
g(

Vo
la

til
ity

)

0 10k 20k 30k 40k 50k
Steps

-2

0

2

0 10k 20k 30k 40k 50k
Steps

-2

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

0.0

0.5

1.0

0 10k 20k 30k 40k 50k
Steps

-2

0

lo
g(

Vo
la

til
ity

)

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

0 10k 20k 30k 40k 50k
Steps

0

2

offline data O offline data X O X

Figure 10: Volatility does not predict collapse. Across tasks and stress settings, step-to-step Q-
update volatility shows weak and inconsistent correspondence with catastrophic failure.

Volatility. We define volatility as the square root of the bias-corrected exponential moving average
of squared one-step Q-updates (Kingma & Ba, 2014):

Volatilityt =

√
mt

1− βt
, mt = β mt−1 + (1− β) E(s,a)∼Bt

[(
∆Qt(s, a)

)2]
,

where ∆Qt(s, a) = Qt+1(s, a) − Qt(s, a) over minibatch Bt, with β = 0.9 in all experiments.
Intuitively, volatility measures the magnitude of per-pair (s, a) Q-value adjustments; larger values
indicate more abrupt updates. As shown in the fourth row of Figure 10, volatility does not consis-
tently track catastrophic failure across tasks, suggesting that SQOR is more predictive of collapse
than aggregate fluctuations of Q over all (s, a) pairs.

15

B ADDITIONAL ABLATION STUDIES ON SOAR

WSRL
Cal-QL

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

0

SOAR
Low
Mid

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

T

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

T

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

r

SOAR
x 0.5
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

batch size
SOAR
256
1024

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

actor lr
SOAR
3e-5
3e-4

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic lr
SOAR
1e-4
1e-3

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 11: SOAR ablations. From top to bottom, the plots correspond to: initial offline data-ratio,
offline data-ratio annealing interval, conservative-weight (α) annealing interval, α annealing tem-
perature, batch size, actor learning rate, and critic learning rate. Across tasks, SOAR remains robust,
exhibiting low catastrophic failure and strong asymptotic success over a wide range of settings.

We examine how each hyperparameter influences SOAR’s behavior, with the goal of understanding
the role of each component and the method’s sensitivity. Unless stated otherwise, exact values and
ranges are listed in Appendix G. Figure 12 summarizes results on four benchmarks: antmaze-large-
diverse, kitchen-partial, kitchen-mixed, and pen-binary.

Initial offline data-ratio. We vary the initial fraction of offline samples mixed into replay before
annealing, testing starting ratios of 0.25 (low) and 0.5 (mid). SOAR is generally robust to this
choice: antmaze-large-diverse and pen-binary show negligible changes in both early stability and
final return across settings. On kitchen-partial, starting from a smaller ratio reduces the initial dip
while preserving asymptotic performance, indicating headroom for further improvements via more
aggressive early down-weighting. On kitchen-mixed, a small initial ratio hurts both early stability
and final success, although it still outperforms the strongest baseline.

16

Offline data-ratio annealing interval. Shorter schedules hasten the transition to fully online train-
ing and tend to speed convergence on kitchen-partial and kitchen-mixed, though variance increases
on the latter. Lengthening the interval delays the transition and can cap the final return on kitchen-
mixed, while yielding similar asymptotic performance on the other tasks. A moderate schedule
offers a favorable stability-performance trade-off.

Conservative-weight (α) annealing interval. Doubling Tα induces greater instability during train-
ing on kitchen-partial and kitchen-mixed and yields lower asymptotic performance. Conversely,
shortening Tα preserves final performance but increases variance, underscoring the importance of
choosing an appropriate interval.

α annealing temperature. Faster exponential decay improves convergence on antmaze-large-
diverse but exacerbates early collapse on kitchen-mixed. Slower decay mainly postpones the timing
of collapse on kitchen-partial and kitchen-mixed rather than reducing its magnitude, and can worsen
collapse on antmaze-large-diverse.

Batch size. Increasing batch size in antmaze raises variance during learning but, overall, both min-
ima and final plateaus change little across tested values, indicating SOAR’s gains are not contingent
on batch size tuning.

Actor learning rate. Varying the actor step size within a standard range produces only minor
differences on most tasks. Very small rates slow progress; very large rates can introduce transient
oscillations. The default strikes a good speed-stability balance, and nearby values behave similarly.

Critic learning rate. Patterns mirror the actor: very small rates slow learning (e.g., antmaze-large-
diverse and kitchen-partial), while very large rates can cause oscillations (kitchen-partial). The
default again provides a reasonable compromise.

Takeaway. While the magnitude of catastrophic failure and the ultimate success rate can shift
with hyperparameters, SOAR variants consistently matches or outperform baselines across set-
tings. Batch size and learning rates have comparatively modest effects, whereas annealing schedules
materially influence both early stability and asymptotic performance. Together with the single-
component analyses in Section 7.2, these results suggest that practitioners can tailor design choices
on the method to their safety and performance requirements while retaining SOAR’s core benefits.

17

C OTHER ATTEMPTS TO MITIGATE CATASTROPHIC FAILURE

batch size
256
512
1024

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e antmaze-large-diverse-v2

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-partial-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
kitchen-mixed-v0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0
pen-binary-v0

actor lr
3e-5
1e-4
3e-4

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic lr
1e-4
3e-4
1e-3

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic dim
x 0.5
Default
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

policy dim
x 0.5
Default
x 2.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

critic
LayerNorm

x
o

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

policy
LayerNorm

x
o

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

offline phase
duration

x 0.5
Default
x 1.5

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Figure 12: Hyperparameter and architectural tweaks do not consistently mitigate catastrophic
failure. From top to bottom, the plots correspond to: batch size, actor learning rate, critic learning
rate, critic hidden dimension, actor hidden dimension, LayerNorm in the critic, LayerNorm in the
actor, and the duration of the offline pre-training phase. Across all settings and tasks, none of these
factors consistently mitigates catastrophic failure.

In Section 6.2, we examined whether tuning the UTD ratio, varying warmup length,
adjusting the Cal-QL conservative weight αCal-QL, or regularizing the critic shift via
DKL

(
softmax(Qoffline)|softmax(Qonline)

)
could mitigate catastrophic failure. None of these in-

terventions proved effective. Here, we extend this investigation to additional settings: batch size,
actor learning rate, critic learning rate, critic layer hidden dimension size, actor layer hidden di-
mension size, LayerNorm in the critic, LayerNorm in the actor, and the duration of the offline
pre-training phase. As shown in Figure 12, across four tasks none of these choices consistently re-
duces catastrophic failure, reinforcing our conclusion that such collapses are not resolved by routine
hyperparameter or architectural tweaks.

18

D ANTMAZE-ULTRA-DIVERSE: A HIGH-RISK STRESS TEST FOR
OFFLINE-TO-ONLINE RL

0 100k 200k 300k 400k
Steps

0.0

0.5

1.0

Su
cc

es
s R

at
e

antmaze-ultra-diverse-v2

SOAR
offline data annealing

WSRL
PORL

Cal-QL
CQL

IQL
SAC

Figure 13: AntMaze-Ultra-Diverse results. This highlights the value of retaining a conservative
regularizer when exploration carries high risk.

AntMaze-Ultra-Diverse presents an extreme exploration regime with highly diverse start-goal pairs
and long horizons, where online rollouts readily drift off the offline support, and sparse rewards
make recovery difficult. Figure 13 summarizes the results. Purely online SAC stays near zero, and
standard offline baselines (CQL, IQL) remain low and flat. Offline-to-online methods that remove
offline inductive bias early (WSRL, PORL, and our dual annealing SOAR) also struggle to make
headway in this setting. In contrast, the variant that anneals offline data while fixing conservatism,
decaying the replay ratio λt but keeping the conservative-weight α unchanged, delivers the most
stable learning and competitive final returns here.

This suggests a practical design rule: when exploration is liable to precipitate extreme failure, it can
be preferable to retain conservative regularizer during fine-tuning, e.g., anneal λt while holding (or
very slowly annealing) α, trading some exploration freedom for robustness. On easier tasks, our
main results show that dual annealing (SOAR) typically offers the best overall trade-off.

E EXTENDED RELATED WORKS

Offline RL. Online RL requires actual interaction with the environment, which can be expensive
or dangerous in domains like robotics, healthcare, and recommender systems (Singh et al., 2022;
Liu et al., 2020; Chen et al., 2024). Offline RL emerged to mitigate this issue by using a static
dataset previously collected by a behavior policy to enable sample-efficient policy learning (Pruden-
cio et al., 2023). While effective, a policy trained with offline static data faces significant problems
when it encounters unseen circumstances (Prudencio et al., 2023). Various approaches have been
proposed to address this limitation, which can be categorized into regularization (Fujimoto & Gu,
2021; Park et al., 2025; Tarasov et al., 2023; Kumar et al., 2020), uncertainty estimation (An et al.,
2021; Nikulin et al., 2023), model-based methods (Kidambi et al., 2020; Yu et al., 2020; 2021; Chit-
nis et al., 2024; Park & Lee, 2024), one-step methods (Brandfonbrener et al., 2021; Eysenbach et al.,
2022; Park et al., 2025), weighted regression (Peng et al., 2019; Wang et al., 2020) and in-sample
maximization (Garg et al., 2023; Kostrikov et al., 2022; Xu et al., 2023). Among these, we build
upon CQL (Kumar et al., 2020) as the foundation for our method, which directly addresses the over-
estimation issue by adding a penalty to the Q-function. We adopted IQL (Kostrikov et al., 2022) as
one of our baselines, which improves upon the behavior policy in the dataset by leveraging the value
function’s generalization to enhance the quality of policy, without evaluating out-of-distribution ac-
tions.

19

F DETAILS ON BASELINE ALGORITHMS

Soft Actor-Critic (SAC) (Haarnoja et al., 2018). SAC extends standard actor-critic methods by
incorporating entropy maximization into the RL objective. Instead of maximizing only the expected
return, SAC also maximizes the entropy of the policy to encourage exploration and prevent prema-
ture convergence to deterministic policies. The resulting objective is to maximize the expected sum
of rewards and entropies:

J(π) = Eπ

[∞∑
t=0

γt (r(st, at) + αH(π(·|st)))

]
,

where H(π(·|st)) = −Eat∼π[log π(at|st)] denotes the entropy of the policy at state st, and α > 0
is the temperature parameter that balances reward maximization and entropy.

Conservative Q-Learning (CQL) (Kumar et al., 2020). CQL learns a Q-function by explicitly
regularizing Q-values to mitigate overestimation issues common in offline RL (Prudencio et al.,
2023):

L(θ) = α
(
Es∼D,a∼π[Qθ(s, a)]− Es,a∼D[Qθ(s, a)]

)
︸ ︷︷ ︸

Conservative regularizer

+LTD(θ)

Here, π represents the current policy, D is the offline dataset, and α controls the intensity of the
conservative regularization. The term LTD is the temporal difference loss used in Q-learning meth-
ods, while the conservative regularization penalizes Q-values for state-action pairs not present in the
offline dataset D.

Implicit Q-learning (IQL) (Kostrikov et al., 2022). The IQL algorithm learns a state-value function
VθV : S → R and an action-value function QθQ : S ×A → R by minimizing:

LV (θV) = E(s,a)∼D

[
ℓ2κ

(
VθV (s)−Qθ̄Q(s, a)

)]
,

LQ(θQ) = E(s,a,r,s′)∼D

[(
QθQ(s, a)− r − γVθV (s

′)
)2]

,

where the expectile loss is defined as ℓ2κ(x) = |κ − 1[x < 0]|x2 (Newey & Powell, 1987), and θ̄Q
represents the target network parameters. Unlike standard MSE loss, expectile loss asymmetrically
weights positive and negative errors, with κ > 0.5 emphasizing higher Q-values. By doing so,
IQL evaluates only actions from the dataset, which enables policy improvement without querying
out-of-distribution actions, thereby inducing implicit conservatism.

Calibrated Q-Learning (Cal-QL) (Nakamoto et al., 2023). Cal-QL adjusts CQL by calibrating
the learned Q-function relative to a reference policy to avoid initial degradation caused by overly
pessimistic Q-values during fine-tuning. The conservative regularization term in CQL is altered by
substituting Es∼D,a∼π[Qθ(s, a)] with Es∼D,a∼π[max(Qθ(s, a), V

µ(s))], where V µ(s) represents
the value function of the reference policy µ, which can be estimated via Monte-Carlo return. This
modification prevents the problem of overly small Q-values in CQL by giving a lower bound with
reference policy.

Policy-Only Reinforcement Learning Fine-Tuning (PORL) (Xiao et al., 2025). PORL focuses on
the challenge of fine-tuning online RL using only a pretrained policy, without relying on pretrained
Q-functions or offline datasets. This approach is especially beneficial when pretrained Q-functions
are either unreliable due to pessimism or unavailable, such as in imitation learning scenarios. PORL
begins by training the randomly initialized Q-function at the beginning of the online fine-tuning
phase. Training data is collected based on the online interaction of the pretrained policy using an
epsilon-greedy exploration strategy. During this initial sampling phase, the Q-function is trained
via temporal difference learning with a high UTD ratio. After this pre-sampling period, PORL
transitions to standard SAC fine-tuning, updating both the policy and the Q-function.

Warm-start RL (WSRL) (Zhou et al., 2025). WSRL addresses the distribution shift issue from
offline to online data in fine-tuning without offline data by introducing a warmup phase. This phase
utilizes a frozen pretrained policy to collect online rollouts. The data collected during warmup
bridges the distribution mismatch and helps recalibrate the offline Q-function to the online distribu-
tion, allowing the method to adapt in the online environment quickly. Once the warmup phase is
complete, WSRL proceeds with conventional online RL using SAC, employing a high UTD ratio.

20

G IMPLEMENTATION DETAILS

G.1 DETAILS ON ENVIRONMENTS

AntMaze. The AntMaze environment, part of the D4RL benchmark suite (Fu et al., 2020), tasks an
8-DoF ant quadruped robot with navigating through a large and complex maze to reach a designated
goal position. The agent receives a binary reward of +1 only upon successfully reaching the goal.
The observation space is 29-dimensional, including the robot’s position, orientation, and velocity,
while the action space is a continuous 8-dimensional vector, normalized to the range [−1, 1]. We
use two variants: antmaze-large-diverse-v2, which contains trajectories collected by commanding
the agent to random goals from random start positions, and antmaze-large-play-v2, which contains
trajectories directed to a specific location. Both environments share the same maze structure and
maximum episode length of 1000 steps.

FrankaKitchen. The FrankaKitchen environment contained in D4RL (Fu et al., 2020) requires con-
trolling a 9-DoF Franka Panda robotic arm to manipulate various kitchen appliances and configure
the environment into a predefined target state. Each task consists of four subtasks, and the agent
receives a reward between 0 and 4 based on the number of successfully completed subtasks. The
observation space is 60-dimensional, encompassing joint positions and object states, and the action
space is a 9-dimensional continuous vector normalized to [−1, 1]. We use two benchmark environ-
ments from D4RL: kitchen-partial-v0 and kitchen-mixed-v0. The former includes a mix of complete
and incomplete demonstrations, where task elements involve operating the microwave, kettle, light
switch, and slide cabinet. The latter contains only incomplete demonstrations. Its task components
include the microwave, kettle, bottom burner, and light switch. Both environments use a maximum
episode length of 280 steps.

Adroit. The Adroit suite (Rajeswaran et al., 2017) evaluates dexterous manipulation using a high-
DoF robotic hand. Specifically, we use two tasks from the D4RL benchmark: pen-binary-v0 and
door-binary-v0. In pen-binary-v0, a 24-DoF shadow hand must reorient a pen to match a target
pose, while in door-binary-v0, a 28-DoF hand must grasp and rotate a door handle to open it. Both
environments have sparse binary rewards: a reward of +1 is given only upon successful task comple-
tion. The observation space is 45-dimensional for the pen task and 39-dimensional for the door task,
consisting of hand joint angles and object poses. The action space is continuous, 24-dimensional
for the pen task and 28-dimensional for the door task, each normalized to [−1, 1]. The maximum
episode lengths are 100 and 200 steps respectively.

G.2 NETWORK ARCHITECTURES

The network architecture is adopted directly from WSRL (Zhou et al., 2025), where the agent fol-
lows an actor-critic framework. The actor network takes the observation and outputs the mean and
the log standard deviation of a Gaussian distribution to sample actions. The critic network takes
the concatenated observation and action vectors and feeds them into an ensemble of 10 Q-functions.
Each Q-function outputs a scalar Q-value. For stability, 2 Q-functions are randomly subsampled dur-
ing target computation, and minimum value is used. Both the actor and the critic are implemented
as multilayer perceptrons (MLPs) with Rectified Linear Unit (ReLU) activation. A learnable tem-
perature parameter is used to control the entropy regularization. The exact hidden dimensions for
each domain are provided in Table 1.

G.3 HYPERPARAMETERS

Table 1 summarizes the hyperparameters used in our experiments. Unless noted otherwise, opti-
mization and architecture settings follow WSRL (Zhou et al., 2025), with the following uniform
modifications across all baselines: (i) the batch size is increased from 256 to 512; (ii) we employ
an ensemble of ten Q-functions and compute targets as the minimum over two critics randomly
subsampled each update, following REDQ (Chen et al., 2021); and (iii) layer normalization (Ba
et al., 2016) is applied to both the policy and critic networks to mitigate uncontrolled extrapolation
effects (Ball et al., 2023). For PORL, we adopt the authors’ settings described in Xiao et al. (2025).

21

Antmaze Adroit Kitchen

large diverse large play ultra diverse door pen partial mixed

SOAR
λ0 0.75 0.25 0.25 0.25 0.75 0.9 0.75
Tλ 40,000 40,000 40,000 20,000 40,000 80,000 20,000
Tα 80,000 80,000 40,000 40,000 80,000 160,000 160,000
r 5.0 5.0 5.0 5.0 5.0

Optimization
Actor Learning Rate 1 × 10−4 1 × 10−4 1 × 10−4

Critic Learning Rate 3 × 10−4 3 × 10−4 3 × 10−4

Batch Size 512 512 512
UTD 1 1 1
Offline Steps 1,000,000 40,000 250,000
α (= α0) 5.0 1.0 5.0
warmup step 5,000 5,000 5,000

Architecture
Critic Network [256, 256, 256, 256] [512, 512, 512] [512, 512, 512]
Actor Network [256, 256] [512, 512] [512, 512, 512]
Activations ReLU ReLU ReLU
Q-ensemble 10 10 10

Table 1: Hyperparameters.

We perform hyperparameter tuning with a particular focus on three key components, λ0, Tλ, and
Tα. Specifically, we explore λ0 ∈ [0.25, 0.5, 0.75, 0.9], Tλ ∈ [20,000, 40,000, 80,000], and Tα ∈
[40,000, 80,000, 160,000].

G.4 ONLINE TRAINING TIME COMPARISON

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 2.26 ± 0.01 2.73 ± 0.01 3.35 ± 0.07 3.44 ± 0.01 2.82 ± 0.02 2.08 ± 0.02 1.53 ± 0.0
antmaze-large-play-v2 2.6 ± 0.14 3.48 ± 0.08 3.54 ± 0.06 3.26 ± 0.03 2.34 ± 0.03 2.09 ± 0.03 1.52 ± 0.0
antmaze-ultra-diverse-v2 4.82 ± 0.12 4.83 ± 0.01 4.87 ± 0.01 5.09 ± 0.01 4.01 ± 0.01 3.32 ± 0.03 2.68 ± 0.0

kitchen-partial-v0 3.14 ± 0.03 3.64 ± 0.02 3.78 ± 0.05 4.56 ± 0.03 3.52 ± 0.05 2.33 ± 0.02 1.71 ± 0.01
kitchen-mixed-v0 3.62 ± 0.05 3.97 ± 0.05 3.83 ± 0.06 4.57 ± 0.02 3.6 ± 0.04 2.37 ± 0.05 1.73 ± 0.01

door-binary-v0 1.77 ± 0.01 2.9 ± 0.01 2.93 ± 0.01 3.55 ± 0.01 2.43 ± 0.01 1.28 ± 0.02 0.78 ± 0.01
pen-binary-v0 2.26 ± 0.01 2.77 ± 0.01 2.79 ± 0.01 3.51 ± 0.01 2.29 ± 0.01 1.13 ± 0.1 0.67 ± 0.0

Average 2.88 ± 0.17 3.49 ± 0.05 3.58 ± 0.11 3.91 ± 0.12 3.04 ± 0.14 2.09 ± 0.01 1.52 ± 0.11

Table 2: Online training time. Bold indicates the fastest training time, and underline indicates the
second fastest.

Tables 3 and 4 report success rates (mean ± SE) after 400k and at 350k online fine-tuning, respec-
tively, averaged over five seeds. Success rates for all baselines stabilize by 350k steps, validating the
350k-400k window as a reliable proxy for asymptotic performance.

SOAR achieves shorter online fine-tuning time than the baselines (Table 2). This is largely due
to removing the conservative regularizer during online training, which otherwise incurs additional
computational overhead. Although WSRL and PORL also drop the conservative penalty, their de-
fault high UTD ratios increase computation per environment step, resulting in longer wall-clock
times than SOAR.

G.5 REPRODUCING BASELINES

All baseline methods were reproduced under unified settings. WSRL, Cal-QL, CQL, IQL, and SAC
were evaluated using the implementations provided in the WSRL codebase (Zhou et al., 2025).
SOAR was also implemented on the same codebase. Since there was no public implementation of
PORL, we reimplemented it following the methodology described in Xiao et al. (2025).

22

G.6 EXPERIMENTAL SETUP AND REPRODUCIBILITY

All experiments were conducted on a compute node equipped with 8 NVIDIA A100 GPUs (80GB
each), an AMD EPYC 7543 32-Core CPU, and 885 GB of RAM. The software environment was
based on Python 3.10.18, Pytorch 2.7.0, JAX 0.4.25 with CUDA 12.2.

G.7 PSEUDOCODE OF SOAR

Algorithm 1 SOAR: Smooth Offline-to-Online Annealing for RL (concise)

1: Inputs: offline dataset Doff , online steps Non, offline steps Noff , schedules (λ0, Tλ) and
(α0, r, Tα)

2: Initialize: critic Qθ, actor πϕ; online buffer Don ← ∅
3: Offline pre-training (CQL)
4: for i = 1 to Noff do
5: Sample batch B ∼ Doff ; update Qθ, πϕ with CQL using weight α0

6: end for
7: Online fine-tuning with annealing
8: for t = 1 to Non do
9: Collect transition (st, at, rt, st+1) with πϕ; append to Don

10: Compute schedules: λt = max{0, λ0(1− t/Tλ)}, αt =

{
α0 exp(−r t/Tα), t ≤ Tα

0, t > Tα

11: Sample mixed batch Bt ∼ λtDoff + (1− λt)Don

12: Update Qθ and πϕ with the same CQL losses as offline, but using Bt and weight αt

13: end for

H LIMITATIONS

While SOAR provides a simple and effective recipe for bridging offline pre-training and online
fine-tuning, several limitations remain.

Scope of evaluation. Our experiments focus on continuous-control benchmarks (AntMaze,
FrankaKitchen, Adroit) under a single-agent. We do not evaluate hard safety constraints, non-
stationary dynamics, or multi-agent settings; transfer to these regimes is not guaranteed.

Hand-designed schedules. The linear (data-ratio) and exponential (conservative-weight) schedules
require environment-level horizon parameters and temperature/interval choices. Although ablations
indicate robustness, some sensitivity remains, and selecting schedules still needs modest tuning. We
do not learn schedules adaptively or condition them on online confidence/uncertainty.

Diagnostic constraints. Our primary diagnostic, SQOR, is post-hoc and requires a converged critic
checkpoint for comparison; this limits its use as a real-time control signal. Moreover, SQOR estab-
lishes a strong correlation with collapse but not causality; alternative mechanisms could co-vary in
settings we did not test.

Statistical coverage. Unless otherwise noted, we use a limited number of seeds due to computa-
tional constraints. Although confidence intervals are reported, rare failure modes may be under-
sampled.

I LLM USAGE

We used a large language model (LLM) solely for language editing. Concretely, the LLM assisted
with grammar and style polishing, LaTeX phrasing (e.g., equation and caption wording), and im-
proving clarity and concision of author-written text. The LLM was not used to generate ideas, design
algorithms, select hyperparameters, run experiments, analyze data, create figures/tables, write code,
or produce mathematical results.

23

J VISUALIZATIONS

(a) antmaze-large-diverse-v2: 8-DoF ant navigating through a maze to reach the goal.

(b) antmaze-large-play-v2: Same evaluation as diverse-v2, different training data.

(c) kitchen-partial-v0: Completing subtasks: microwave, kettle, light switch, and slide cabinet.

(d) kitchen-mixed-v0: Completing subtasks: microwave, kettle, bottom burner, and light switch.

(e) pen-binary-v0: 24-DoF shadow hand reorienting a pen to target pose.

(f) door-binary-v0: 28-DoF hand opening a door by rotating the handle.

Figure 14: Representative episodes across six tasks. Each row shows temporally ordered frames
from a trajectory, demonstrating navigation (antmaze-large-diverse-v2, antmaze-large-play-v2),
kitchen manipulation (kitchen-partial-v0, kitchen-mixed-v0), and dexterous control (pen-binary-v0,
door-binary-v0).

24

K NUMERICAL RESULTS

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 0.96 ± 0.02 0.68 ± 0.17 0.9 ± 0.07 0.97 ± 0.01 0.92 ± 0.05 0.06 ± 0.05 0.0 ± 0.0
antmaze-large-play-v2 0.93 ± 0.02 0.95 ± 0.02 0.47 ± 0.2 0.9 ± 0.07 0.95 ± 0.03 0.01 ± 0.01 0.0 ± 0.0

kitchen-partial-v0 0.93 ± 0.04 0.93 ± 0.06 0.91 ± 0.06 0.7 ± 0.09 0.44 ± 0.12 0.4 ± 0.05 0.49 ± 0.07
kitchen-mixed-v0 0.94 ± 0.05 0.72 ± 0.11 0.88 ± 0.06 0.45 ± 0.12 0.4 ± 0.06 0.31 ± 0.09 0.3 ± 0.05

door-binary-v0 1.0 ± 0.0 0.8 ± 0.2 0.6 ± 0.24 0.19 ± 0.19 0.18 ± 0.18 0.0 ± 0.0 0.2 ± 0.2
pen-binary-v0 0.98 ± 0.02 0.97 ± 0.01 0.99 ± 0.01 0.94 ± 0.02 0.81 ± 0.09 0.33 ± 0.1 0.78 ± 0.04

Average 0.82 ± 0.06 0.72 ± 0.07 0.68 ± 0.07 0.62 ± 0.06 0.55 ± 0.07 0.16 ± 0.03 0.25 ± 0.06

Table 3: Performance at 400k online steps. Bold indicates the best performance per task, and
underline indicates the second best.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL SAC

antmaze-large-diverse-v2 0.99 ± 0.01 0.73 ± 0.18 0.84 ± 0.07 0.95 ± 0.03 0.96 ± 0.02 0.03 ± 0.03 0.0 ± 0.0
antmaze-large-play-v2 0.9 ± 0.03 0.98 ± 0.01 0.37 ± 0.23 0.89 ± 0.07 0.95 ± 0.03 0.01 ± 0.01 0.0 ± 0.0

kitchen-partial-v0 0.97 ± 0.02 0.95 ± 0.05 0.9 ± 0.06 0.7 ± 0.09 0.44 ± 0.12 0.39 ± 0.05 0.47 ± 0.06
kitchen-mixed-v0 0.95 ± 0.02 0.7 ± 0.12 0.88 ± 0.06 0.45 ± 0.12 0.4 ± 0.06 0.3 ± 0.08 0.25 ± 0.03

door-binary-v0 0.98 ± 0.01 0.8 ± 0.2 0.6 ± 0.24 0.17 ± 0.17 0.19 ± 0.19 0.0 ± 0.0 0.2 ± 0.2
pen-binary-v0 1.0 ± 0.0 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.01 0.72 ± 0.05 0.4 ± 0.05 0.84 ± 0.02

Average 0.84 ± 0.06 0.72 ± 0.07 0.65 ± 0.07 0.63 ± 0.06 0.54 ± 0.06 0.16 ± 0.03 0.25 ± 0.06

Table 4: Performance at 350k online steps. Bold indicates the best performance per task, and
underline indicates the second best.

Tables 3 and 4 report success rates (mean ± SE) after 400k and at 350k online fine-tuning, respec-
tively, averaged over five seeds. Success rates for all baselines stabilize by 350k steps, validating
the 350k-400k window as a reliable proxy for asymptotic performance. Offline-to-online methods
consistently outperform offline-only approaches, and SOAR achieves the highest average success
rate.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.34 ± 0.04 0.24 ± 0.05 0.39 ± 0.04 0.26 ± 0.04 0.26 ± 0.05 0.03 ± 0.02
antmaze-large-play-v2 0.28 ± 0.04 0.29 ± 0.02 0.37 ± 0.02 0.24 ± 0.04 0.28 ± 0.05 0.0 ± 0.0

kitchen-partial-v0 0.68 ± 0.06 0.73 ± 0.06 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.3 ± 0.06
kitchen-mixed-v0 0.47 ± 0.06 0.47 ± 0.06 0.49 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.4 ± 0.04

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.73 ± 0.07 0.66 ± 0.05 0.74 ± 0.03 0.75 ± 0.05 0.58 ± 0.03 0.89 ± 0.04

Average 0.42 ± 0.04 0.41 ± 0.04 0.45 ± 0.04 0.4 ± 0.04 0.39 ± 0.04 0.25 ± 0.05

Table 5: Performance after the offline phase.

Table 5 reports success rates (mean ± SE) at the end of the offline pre-training phase, i.e., the start
of online fine-tuning, averaged over five seeds. Despite identical offline training procedures, end-of-
offline performance shows small variations across SOAR, WSRL, PORL, Cal-QL, and CQL. These
differences reflect evaluation stochasticity rather than algorithmic effects.

25

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.15 ± 0.05 0.07 ± 0.04 0.39 ± 0.04 0.17 ± 0.07 0.21 ± 0.04 0.03 ± 0.02
antmaze-large-play-v2 0.08 ± 0.03 0.2 ± 0.06 0.37 ± 0.02 0.16 ± 0.05 0.16 ± 0.07 0.0 ± 0.0

kitchen-partial-v0 0.6 ± 0.08 0.68 ± 0.09 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.19 ± 0.04
kitchen-mixed-v0 0.36 ± 0.1 0.42 ± 0.09 0.48 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.35 ± 0.04

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.32 ± 0.08 0.52 ± 0.04 0.66 ± 0.04 0.33 ± 0.08 0.58 ± 0.03 0.87 ± 0.03

Average 0.28 ± 0.04 0.34 ± 0.05 0.44 ± 0.03 0.31 ± 0.04 0.36 ± 0.04 0.23 ± 0.05

Table 6: Catastrophic failure (0-400K window). Bold indicates the lowest catastrophic failure,
and underline indicates the second lowest.

Task SOAR (Ours) WSRL PORL Cal-QL CQL IQL

antmaze-large-diverse-v2 0.15 ± 0.05 0.07 ± 0.04 0.39 ± 0.04 0.17 ± 0.07 0.21 ± 0.04 0.03 ± 0.02
antmaze-large-play-v2 0.08 ± 0.03 0.2 ± 0.06 0.37 ± 0.02 0.16 ± 0.05 0.16 ± 0.07 0.0 ± 0.0

kitchen-partial-v0 0.55 ± 0.09 0.68 ± 0.09 0.7 ± 0.04 0.68 ± 0.05 0.7 ± 0.06 0.18 ± 0.04
kitchen-mixed-v0 0.32 ± 0.1 0.42 ± 0.09 0.48 ± 0.07 0.52 ± 0.06 0.58 ± 0.03 0.33 ± 0.03

door-binary-v0 0.2 ± 0.05 0.31 ± 0.19 0.24 ± 0.03 0.21 ± 0.07 0.08 ± 0.08 0.05 ± 0.04
pen-binary-v0 0.32 ± 0.08 0.52 ± 0.04 0.66 ± 0.04 0.33 ± 0.08 0.58 ± 0.03 0.83 ± 0.04

Average 0.26 ± 0.03 0.34 ± 0.05 0.44 ± 0.03 0.31 ± 0.04 0.36 ± 0.04 0.22 ± 0.05

Table 7: Catastrophic failure (0-100K window). Bold indicates the lowest catastrophic failure,
and underline indicates the second lowest.

Tables 6 and 7 report catastrophic failure measured over the 0-400k and 0-100k windows, respec-
tively. All values are averaged over five seeds and reported as mean ± SE. Estimates do not differ
significantly between the two windows, indicating that failures arise primarily during the offline-to-
online transition. SOAR attains the lowest catastrophic failure on average. For clarity, we do not
highlight IQL, whose low failure largely reflects weak performance after the offline phase rather
than stable transitions.

26

	Introduction
	Related Works
	Experimental Setup
	Challenges in Bridging Offline and Online RL: Performance vs. Stability
	Role of Offline Data and Conservative Regularization in Online Fine-tuning
	Spurious Q-Optimism as a Driver of Catastrophic Failure
	Quantifying Spurious Q-Optimism
	Can Catastrophic Failure Be Mitigated by Hyperparameter Tuning?

	Annealing Bridges Offline and Online RL
	SOAR (Smooth Offline-to-Online Annealing for RL)
	Ablation: What does each annealing component contribute?

	Conclusion
	Additional Analysis on Catastrophic Failure
	Additional Ablation Studies on SOAR
	Other Attempts to Mitigate Catastrophic Failure
	AntMaze-Ultra-Diverse: A High-Risk Stress Test for Offline-to-Online RL
	Extended Related Works
	Details On Baseline Algorithms
	Implementation Details
	Details on Environments
	Network Architectures
	Hyperparameters
	Online Training Time Comparison
	Reproducing Baselines
	Experimental Setup and Reproducibility
	Pseudocode of SOAR

	Limitations
	LLM Usage
	Visualizations
	Numerical Results

